谁是里约奥运会上的变性选手

谁是里约奥运会上的变性选手,第1张

里约奥运会已经落幕,但有个疑问至今没有答案。早在奥运开幕前,英国媒体就曝出,本届奥运会英国代表团内有两名接受过变性手术的运动员,其中一人更是具备夺金实力。《每日邮报》称,运动员非常害怕变性经历被曝光,即使真的赢了奖牌,他们也可能“把奖牌退回去”。

至今,这两名运动员依然保持匿名,其背后是奥运会几十年来争论不休的运动员性别话题——变性者一度被禁止参加奥运会比赛,直到2003年国际奥委会在斯德哥尔摩举行了一场会议,这些运动员才获得这一权益。

人们相信,由于两性不同的生理条件,“女变男”的参赛者会吃亏,而“男变女”则拥有不容争辩的优势。由于可能影响公平竞争原则,近百年来奥运赛场内外对变性者的争议主要集中在女子项目上。

最早的争议出自1936年的柏林奥运会。在当年的女子百米飞人大赛中,美国人海伦·斯蒂芬斯(Helen Stephens)力压上届奥运会该项目金牌得主、波兰运动员斯黛拉·沃尔什(Stella Walsh),创造了新的世界纪录。让这位美国姑娘没想到的是,她粗犷的相貌、惊人的速度引来看台上波兰和德国观众的质疑,人们大叫着“海伦·斯蒂芬斯是男性,是男扮女装”,很快,整个赛场沸腾了,亚军沃尔什也对冠军的性别提出了质疑。

组委会声明称,赛前已对每位运动员的性别做了“严格检查”,但为了平息场内骚动,仍然决定让她当着部分女裁判的面脱下衣服。她照做了。斯蒂芬斯最终被确认为女性,金牌和新的世界纪录被判定有效。

这是奥运会有史以来的第一次公开性别检查。不过讽刺的是,40年后,已经移居美国俄亥俄州的沃尔什在一起街头抢劫案中身亡,尸检发现其拥有男性生殖器和一些女性性征,染色体检测则证明其同时具有XX和XY染色体——警方断定,沃尔什才是那场比赛中的双性人。

到了上世纪60年代,国际重大体育赛事正式开始检测性别。1966年,国际田联开展了名为“femininity testing”的性别鉴定,女运动员须赤身从一群医生面前走过,某些情况下还需配合做些妇科检查。从1968年墨西哥城奥运会开始,国际奥委会要求对所有女性运动员进行更科学、严谨的染色体检测。

日本“The Olympians”网站称,波兰运动员克洛布克瓦斯嘉(Ewa Klobukowska)因1968年被检测出染色体异常,而失去了1964年东京奥运会上取得的女子100米金牌。她本人对此强烈抗议:“这是对我的最肮脏和愚蠢的指控。我知道自己是谁,也明白自己的感受。”

里约奥运会对变性人“开绿灯”

历史上,摆在变性或双性运动员面前的结局是强制退赛。1976年,变为女性的网球运动员瑞倪·理查兹(Renee Richards)被禁止参加美国网球公开赛。理查兹在1975年接受了变性手术,而后移居到美国加州开始新生活,不过她1.85米的壮硕身材还是引来了诸多质疑,并最终被禁赛。

此后20多年,禁止变性人参赛引发了种种争议。《每日邮报》指出:“如果男变女可能导致不公平,那禁止变性人参赛何尝不是一种歧视?”2003年,国际奥委会第一次召开有关变性运动员的会议后,允许他们参加奥运会,但只针对那些在青春期前就接受了变性手术的运动员。如果在青春期后才接受手术,则运动员须经过激素调整及明确的法律认可,才能在手术两年后拿到参赛资格。

北美青年文化网站“VICE”指出,随着整个社会提高性别认知程度,国际奥委会也在不断放宽标淮。2015年年底,国际奥委会不再要求变性人接受手术,女变男的运动员参加男子项目几乎无限制,而男变女的运动员参加女子项目前只需证明其睾丸激素水平一年内低于标准值10nmol/L即可。

去年11月,国际奥委会专家小组证实,“借助激素治疗由男变女的运动员,并不具备其他女运动员没有的优势”。换句话说,目前的研究认为他们并不比天生的女性更占便宜。

变性运动员乔安娜·哈珀(Joanna Harper)现在是美国普罗维登斯波特兰医疗中心的首席医学物理学家。她告诉“VICE”,就自己个人经历来说,“在长达一年的变性激素治疗期间,我的跑速比过去身为男性时慢12%,而且治疗期间失去了大量肌肉。变为女性的运动员体重通常要高于普通女性,但睾丸素水平反而低于普通女性,就好比一辆车体积庞大但引擎很小,变性女运动员其实劣势明显。”

奥运史上最传奇的变性女运动员要属美国的布鲁斯·詹纳(Bruce Jenner),不过她是在结束运动生涯几十年后才接受变性手术的。2015年7月,她的大幅照片登上了美国《名利场》杂志封面。作为十项全能选手,布鲁斯曾在1976年的蒙特利尔奥运会上以创纪录的8.618分夺金,但年过花甲的她突然宣布变性,并且否认自己是同性恋者,只因为“本该就是女性,这一次终于做回了自己”。

奥运变性运动员前途未卜

美国运动员克瑞斯·摩西尔(Chris Mosier)是全球首个公开变性经历的运动员。他曾拥有长达29年的女儿身,但在6年前开始接受变性手术和激素治疗。他成为美国历史上第一位入选国家队的女变男运动员,并在今年代表美国队参加了奥运男子铁人三项角逐。

“VICE”指出,变性运动员通常要承受巨大的舆论压力。或许因为克瑞斯是女变男去参加男子项目,在一定程度上减少了外界对其竞赛公平性的非议。在今年美国体育杂志《ESPN》发行的美体专刊上,克瑞斯全裸出镜,大方展示自己带有手术伤疤的健美身材。

摩西尔告诉“VICE”,变性运动员公开身份要冒极大风险:“一般来说,变性者出行很不安全,遭遇歧视或暴力的几率比普通人高很多。我原本可以在不暴露身份的情况下参赛,但我还是选择站出来为变性人发声。”去年起,他担任美国同性恋、双性恋及跨性别群体(LGBTQ)网站“GO! Athletes”的执行董事,还迎娶了妻子珍(Zhen)。

变性运动员并非体育竞技领域唯一受质疑的群体。哈珀指出,今年的里约奥运会上,南非田径选手卡斯特·塞蒙娅(Caster Semenya)就是备受争议的双性人。

2009年,年仅18岁的塞蒙娅在柏林世锦赛上以打破世界纪录的成绩夺得女子800米金牌,随后却因低沉的嗓音和男性化的体型引发争议。

为了平息波澜,她被国际田联安排做特殊性别检测,结果显示她染色体异常、同时具有两性生殖器官,但没有子宫和卵巢,且体内睾丸素水平高达普通女性的3倍,几近于男性。这令塞蒙娅成了轰动一时的花边新闻。国际田联最终认定她为双性人,可能患有雄激素过多症。

在今年的里约奥运会上,塞蒙娅顺风顺水地摘下女子800米金牌,但其性别问题仍是争议点之一。在《每日邮报》看来,允许她参赛是奥林匹克包容精神的体现,但人们对她的金牌是否公平却耿耿于怀——正是她体内超过普通女性3倍的睾丸酮令她胜出。

该报指出,判断生理性别并易事,最简单的是通过染色体测定,但特殊情况比如塞蒙娅,她同时具有XX和XY染色体,且身上包含很多不符合标淮两性生理特征的性征,因此只能推定她是双性人,或“性别不明人士”。

变性女大学生运动员克洛伊(Chloe)告诉“VICE”,自己很希望有一天能获准参加奥运会,“但太难了,我们仍然面临太多歧视,参加大学体育队选拔时我就碰到过,很多教练觉得培养变性运动员没有好结果,比赛时我也经常被嘲笑”。

但她相信,随着时代发展,关于变性人和双性人参赛,国际社会会有更普遍的共识。克洛伊还提出一项解决办法:把比赛分成不止男女两类,“这样会有更多群体参赛,也是对所有参赛者最公平和有益的尝试”。

THEMATIC SKETCH

by Alexander Grothendieck

b) theory of derived categories, developed systematically by J.-L. Verdier [V], and exposed by R. Hartshorne [RD], L. Illusie [I] and in [SGA 4, Exp. XVIII].

These two currents of reflections are far from being completed and, without doubt, they are called to be unified to homotopical algebra (cf. the work of Quillen [Q] for a preliminary sketch), and to the theory of n-categories, particularly useful in the geometric interpretation of cohomological invariants ([Gi2] and [R]).

a) Foundational works. The problem was to find a frame enough great to have a common fundament for algebraic geometry (developed by A. Weil, O. Zariski, C. Chevalley and J. - P. Serre over a general base field) and arithmetic. This is realized in EGA I, II, and some parts of EGA III and IV, with the introduction and the study of the notion of “scheme”. Some generalizations have been developed: the formal schemes (EGA I, par. 10)the theory of algebraic spaces of Michael Artin [K]the “algebraic stacks” or “algebraic multiplicities” of Deligne and Mumford [DM]the “relative schemes” [H] (expecting the “formal multiplicities” and the “relative algebraic varieties” over general ringed topos etc.). These generalizations show us the conceptual importance, in the language of scheme, of the notion of localization, i.e. the notion “topos” (cf. par. 7). The foundations developed in [EGA] and [SGA] are, today, the “pain quotidien” of the mostly part of algebraic geometers and their importance has been stressed by many mathematicians: O. Zariski, J.-P. Serre, D. Mumford, Y. Manin, H. Hironaka, F. Chafarevich.

b) Local theory of schemes and morphisms of schemes. In this context we have the developments of commutative algebra (cf. par. 4) and the detailed study of notions as “lisse” morphisms, étale morphisms, net morphisms, plat morphisms etc. The four volumes of [EGA, Chapter IV] are consecrated to these developments, which inspired analogue developments in the theory of analytic spaces and rigid-analytic spaces.

c) Construction of schemes. Among the techniques developed and by some unpublished seminars [FGA], we developed a descente theory [SGA 1, Exp. V and VI], a theory of quotient schemes, Hilbert schemes and Picard schemes, and a theory of formal moduli. We obtained an existence theorem of sheaves of algebraic moduli associated to formal moduli [EGA III, par. 5]. The new point of view is, essentially, the construction of a scheme starting by a functor that represents it. In this approach, I didn’t reach a flexible characterization of representable functors by a relative scheme (locally of finite type over a Noetherian scheme). Michael Artin resolved definitely this problem, substituting the notion of scheme with the more general and more stable notion of “algebraic space” [K]. Among other researches in this direction, inspired by my papers, we have the work of J. Murre about Picard Schemes over a field [Mu] , the work of D. Mumford and M. Raynaud about Picard schemes over general bases [Ra], and finally the work of Mumford and Seshadri about the passage to quotient.

d) Fundamental Group. ([SGA 1], [SGA 2], [SGA 7, Exp 1 e 2], [FGA, n. 182], [G17]). From an algebraic-geometric point of view, after the definition of fundamental group of a general variety, everything had to be done: from descent theorems (including some formal theorems à la Van Kampen) until the calculus of fundamental group in the first not-trivial case (an algebraic curve without some points). We add the theorem of degeneration and finite presentation of fundamental group of an algebraic variety over a algebraically closed field. These results are in [SGA 1], obtained using some classical results over the complex field (obtained through transcendent methods) and a panoply of tools created for our aims (descente theory, étale morphisms, existence theorems for coherent sheaves). Other more special results are: theorems of Lefschetz type [SGA 2]action of local monodromy groups over the fundamental group of a fiber [SGA 7, Exp. I]calculus of some local fundamental groups [G17], via the fundamental groups of some formal schemes. These results have been used in many works and were the inspiration for the thesis of M. me Raynaud [R].

e) Local and global Lefschetz theorems for the Picard groups, for the fundamental group, for the coherent and étale cohomology. We have obtained a comparison between the invariants (cohomological and homotopical) of an algebraic variety and of a hyperplane section. The starting ideas are in [SGA 2]the definitive theorems (in terms of necessary and sufficient conditions) are in the thesis of M.me Raynaud [R].

f) Intersection theory and Riemann-Roch theorem (for general schemes). The principal new idea is that there is almost an identity between the Chow group of classes of cycles over a variety X and a certain group of “classes of coherent sheaves” (modulo torsion), that is K(X). In a modest context this is exposed in [G10] and [G11]. In a more ambitious context it is exposed in [SGA 6]. In the same spirit cf. [SC]. Since then, the idea of reformulating a theorem of a variety (due to F. Hirzebruch) in a more general theorem about a morphism between varieties had a great success and not only in algebraic geometry but also in algebraic topology and differential topology (starting from the “Riemann-Roch differential formula” developed by M. F. Atiyah and F. Hirzebruch [AH], under the inspiration of my relative formulation of Riemann-Roch theorem [G10]).

g) Abelian schemes. In classical terms, these are the families of abelian varieties, parametrized by some scheme. The most important theorems are the “theorem of semi-stable reduction” [SGA 7, exp. IX] and its consequences and variantsthe theorem of existence of morphisms of abelian schemes in [G12] and its variants (generalized by Deligne in a theorem about the cohomology of Hodge-De Rham relative of a family of non-singular complex projective varieties)and a theory of infinitesimal deformations of abelian schemes (unpublished over a general base) in terms of deformation of a Hodge filtration over the cohomology group H1 relative of De Rham (seen as a crystalline cohomology).

h) Monodromy groups. My principal contributions are contained in the first volume of [SGA 7] about the fundamental properties of the action of local monodromy group over the cohomology, as over the fundamental group of a fiber. The principal application is the semi-stable reduction theorem of abelian schemes.

b) Commutative algebra. In the language of schemes, commutative algebra can be considered essentially the local study of schemes. Chapter IV of [EGA]contains numerous new results of commutative algebra, especially the notion of “excellent ring” and its properties of permanence (whose absence was the most evident lacuna in the work of M. Nagata on local rings).

a) Algebraic Groups ([SGA 3], [SC]) This subject is a mix of algebraic geometry and group theory. [SGA 3] deals with general schemes and the algebraic geometry part is considerably larger of group theory. However, through scheme theory, we have obtained some new results, even in the case of groups defined over a base field, the most interesting being contained in [SGA 3, Exp. XIV]. My principal contribution, developing the works of Borel and Chevalley in the context of classical algebraic geometry, has been the systematic application of scheme theory to algebraic groups and to group-schemes

b) Lie Algebras. As sub-product of my researches about the algebraic groups in characteristic p >0, I have found some delicate results about sub-algebras of Borel and Cartan of some Lie algebras, especially on imperfect base-fields [SGA 6, Exp. XIII and Exp. XIV]

c) Brauer Group. My contributions derive, essentially, by application of étale cohomology to the theory of Brauer groups.[CS, Le Groupe de Brauer I-II-III]

d) Discrete Groups. In [CS, Exp VIII], I developed a purely algebraic theory of Chern classes of representations of a discrete group over a general base field (or even a base ring), with some applications of arithmetic nature about the order of Chern classes of complex representations. This theory can be considered as a particular case of a theory of Chern classes of linear representations of general group-schemes, and more generally of a theory of ℓ-adic Chern classes of vector fibred over a general ringed topos. In [G14] I have established, up some things, that for a discrete group G, the theory of linear representations of G (over a general base ring) depends only by the profinite completion of G.

e) Formal Groups ([SGA 7], [G12], [G15], [G16]). This topic is a mix of group theory, Lie groups, algebraic geometry, arithmetic and (in a form very similar to Barsotti – Tate groups) local systems theory. Scheme theory gives a great simplification in this area, as we find in the classic exposition of Manin of Dieudonné theory [M1]. My principal contribution, together with this conceptual simplification, has been the development of a Dieudonné theory for Barsotti – Tate groups over general base schemes with residual characteristic p >0, in terms of “Dieudonné crystals” associated to such groups. A sketch of this theory has been exposed at the ICM of Nice [G15] and in Montreal during the summer of 1970 [G16], and during my courses at the College de France in 1970/71 and 1971/72. A part of these ideas have been developed in the thesis of Messing [Me], and the technical needs of this theory have been the origin of the development of the theory of deformation of commutative group-schemes of Illusie [I], where he proved some conjectures suggested by the “crystalline Dieudonné theory”. The relations between abelian schemes and Barsotti –Tate groups have been explored in [SGA 7, exp IX] and [G12].

d) Complex-analytic De Rham theorems ([G19]) and complex crystalline cohomology. Some results and some ideas, developed about this subject by myself, have been developed in many theoretical developments, such as the generalization of Hodge theory by P. Deligne. [Dl].

e) Rigid analytic spaces. Taking inspiration by the example of “Tate elliptic curve” and by the needs of formal geometry over a complete ring of discrete valuation, I arrived to the partial formulation of notion of “rigid-analytic variety” over a field of complete valuation, which played its role in the first systematic study of this topic by J. Tate. The “crystals” introduced on algebraic varieties defined over a field of characteristic p >0 can be interpreted in some cases in terms of vector fibred with integrable connection over some types of rigid analytic spaces over a field of characteristic 0. This seems to indicate the existence of deep relations between crystalline cohomology in characteristic p >0 and cohomology of local systems over rigid analytic varieties in characteristic 0.

a) COHERENT COHOMOLOGY. We obtained finiteness theoremscomparison theorems with the formal cohomology [EGA III], duality theorems and theorems about residues [RD].

b) ℓ-ADIC COHOMOLOGY. In [SGA4] we defined the étale cohomology, obtaining comparison theorems, finiteness theorems, theorems about the cohomological dimension, the weak Lefschetz theorem. In [SGA5] we obtained duality theorems, the Lefschetz formulas, the formulas of Euler-Poincare, and application of étale cohomology to L-functions [SGA 5].

c) DE RHAM COHOMOLOGY ([G19], [G20])

d) CRYSTALLINE COHOMOLOGY. Some ideas are exposed in [CS, Crystals and the De Rham Cohomology of Schemes], then reprised and systematized in the thesis of Pierre Berthelot [B], and in the work of Luc Illusie and Pierre Berthelot about the crystalline Chern classes [BI].

REFERENCES

[G1] Produits Tensoriels Topologiques et Espaces Nucléaires, Mem. of AMS 16 (1955)

[G2] Résumé de la Théorie Métrique des Produits Tensoriels Topologiques et Espaces Nucléaires, Annales de l’Institut Fourier 4 (1952), 73 – 112

[G3] Sur les espaces (F) et (DF), Summa Math. Brasil. 3 (1954), 57 – 123

[G4] Résumé de la Théorie Métrique des Produits Tensoriels Topologiques, Bull. Sao Paulo 8 (1954), 1 – 79

[G5] La Théorie de Fredholm, Bull SMF 84 (1956), 319 – 384

[G6] The Trace of Certain Operators, Studia Mathematica 20 (1961), 141 –143

[G7] A General Theory of Fiber Spaces with Structure Sheaf, Preprint (1955)

[G8] Théorèmes de Finitude pour la Cohomologie des Faisceaux, Bull. SMF 84 (1956), 1 – 7

[G9] Sur Quelques Points d’Algèbre Homologique, Tôhoku Math. Journal 9 (1957), 119 – 221

[G10] A. BOREL – J.P. SERRE, Le Théorème de Riemann-Roch (d’après Grothendieck), Bull. SMF 88 (1958), 97 – 136

[G11] La Théorie des Classes de Chern, Bull SMF 88 (1958), 137 – 154

[G12] Un théorème sur les Homomorphismes des Schémas Abéliens, Inv. Math 2 (1966), 59 – 78

[G13] Catégories Cofibrées Additives et Complexe Cotangent Relatif, Springer LNM 79 (1968)

[G14] Représentations Linéaires et Compactification Profinie des Groupes Discrets, Manuscripta Math. 2 (1970), 375 – 396

[G15] Groupes de Barsotti-Tate et Cristaux, Actes of ICM Nice (1970), Tome 1, 431 – 436

[G16] Groupes de Barsotti-Tate et Cristaux de Dieudonné, Les Presses de l'Université de Montréal (1974)

[G17] (WITH J. MURRE), The Tame Fundamental Group…, Springer LNM 208 (1971)

[G18] Sur la Classification des Fibres Holomorphes sur la Sphère de Riemann, Amer. J. Math. 79 (1957), 121 – 138

[G19] On the De Rham Cohomology of Algebraic Varieties, Publ. Math. IHES 29 (1966), 95 – 103

[G20] Hodge’s General Conjecture is False for Trivial Reasons, Topology 8 (1968), 299 – 303

[G21] Standard Conjectures on Algebraic Cycles, Bombay Colloquium (1968)

[SC] Seminar Chevalley 1958, Exp. 4 and Exp. 5.

[SHC] Seminar Henri Cartan 13 (1960/61), from Exp. 7 to Exp. 17.

[FGA] A. GROTHENDIECK, Fondements de la Géométrie Algébrique, Secrétariat Mathématique Institut Henri Poincaré .

[EGA] A. GROTHENDIECK – J. DIEUDONNE, Eléments de Géométrie Algébrique, Publ. Math. de l’IHES (1960 – 1967)

[SGA] A. GROTHENDIECK AND COLLABORATORS, Séminaires de Géométrie Algébrique du Bois-Marie (1960 – 1969)

SGA 1 – Revêtements Etales et Groupe Fondamental (1960/61), Springer-Verlag (1970)

SGA 2 – Cohomologie locale et Théorèmes de Lefschetz Locaux et Globaux (1962), North-Holland (1968)

SGA 3 – Schémas en Groupes (1962/64), Springer-Verlag (1970)

SGA 4 – Théorie des Topos et Cohomologie Etale des Schémas (1963/64), Springer-Verlag (1972/73)

SGA 5 – Cohomologie ℓ-adique et Fonctions L (1965/66), Springer-Verlag (1977)

SGA 6 – Théorie des Intersections et Théorème de Riemann-Roch (1966/67), Springer-Verlag (1971)

SGA 7 – Groupes de Monodromie en Géométrie Algébrique (1967/69), Springer-Verlag (1972/73)

[CS] Dix Exposes sur la Cohomologie des Schémas, North-Holland (1968)

WORKS INSPIRED BY GROTHENDIECK

[AH] M. ATIYAH – F. HIRZERBRUCH, Riemann-Roch Theorem for Differentiable Manifolds, Bull. AMS 65 (1959), 276 – 281

[B] P. BERTHELOT, Cohomologie Cristalline des Schémas de Caractéristique p >0, Springer LNM 407 (1974)

[BI] P. BERTHELOT – L.ILLUSIE, Classes de Chern en Cohomologie Cristalline, C.R. Acad. Sci. Paris 270, 1695 – 1697 1750 – 1752.

[D] A. DOUADY, Le Probleme des Modules pour les Sous-Espaces Analytiques Compact d’un Espace Analytique Donné, Ann. Inst. Fourier 16 (1966), 1 – 95

[De] M. DEMAZURE, Motifs de Variétés Algébriques, Sem. Bourbaki 365 (November 1969)

[Dl] P. DELIGNE, Théorie de Hodge I (Proceedings of the ICM, Nice 1970) II (Publ. Math. IHES 40 (1971), 5 – 57) III (Publ. Math. IHES 44 (1974), 5 – 77)

[DM] P. DELIGNE – D. MUMFORD, The Irreducibility of the Space of Curves of Given Genus, Publ. IHES 39 (1969), 75 – 109

[FK] O. FORSTER-K. KNORR, Relativ Analytische Raume und die Kaharenz von Bildgarben, Inv. Math 16 (1972), 113 – 160

[Gi1] J. GIRAUD, Méthode de la Descente, Mem. de la SMF 2 (1964), 1 – 150

[Gi2] J. GIRAUD, Cohomologie non Abélienne, Grundlehren Math. Wiss. 179 Springer–Verlag (1972)

[GV] I. GELFAND – N. VILENKIN, Les Distributions (Tome 4), DUNOD (1968)

[H] M. HAKIM, Topos Annelés et Schémas Relatifs, Ergebnisse Math. Gr. 64, Springer–Verlag (1972)

[I] L. ILLUSIE, Complexe Cotangent et Déformations I – II, Springer LNM 239 et 283 (1971)

[K] D. KNUTSON, Algebraic Spaces, Springer LNM 203 (1971)

[Ki] R. KIEHL, Relativ Analytische Raume, Inv, Math. 16 (1972), 40 – 112

[L] F. LAWVERE, Toposes, Algebraic Geometry and Logic, Springer LNM 274 (1972)

[M1] YURI MANIN, Théorie des Groupes Formels Commutatifs sur des Corps de Caractéristique Finie, Uspekhi Mat. Nauk 18 (1963), 3 – 90

[M2] YURI MANIN, Correspondances, Motifs et Transformations Monoidales, Mat. Sbornik 77 (1968), 475 – 507

[Me] W. MESSING, Crystals Associated to Barsotti-Tate Groups (With applications to Abelian Schemes), Springer LNM 264 (1972)

[Mu] J. MURRE, On Contravariant Functors from Category of Preschemes over a Field into the Category of Abelian Groups, Publ. Math. IHES 23 (1964), 5 – 43

[Q] D. QUILLEN, Homotopical Algebra, Springer LNM 43 (1967)

[R] M.ME RAYNAUD, Théorèmes de Lefschetz en Cohomologie Cohérente et en Cohomologie Etale, Mem. de la SMF. 41 (1976)

[RR] J.-P. RAMIS – G. RUGET, Complexe Dualisant et Théorèmes de Dualité in Géométrie Analytique Complexe, Publ. Math. IHES 38 (1970), 77 – 91

[RRV] J.P. RAMIS – G. RUGET – J.L. VERDIER, Dualité Relative en Géométrie Analytique Complexe, Inv. Math. 13 (1971), 261 – 283

[Ra] M. RAYNAUD, Spécialisation du Foncteur de Picard, Publ. IHES 38 (1970), 27 – 76

[RD] R. HARTSHORNE, Residues and Duality, Springer LNM 20 (1966)

[T] G. TRAUTMAN, Abgeschlossenheit von Corandmoduln und Fortsetzbarkeiy Koharenter Analytischer Garben, Inv. Math. 5, 216 – 230

[V] J.-L. VERDIER, Des Catégories Dérivées des Catégories Abéliennes, SMF Astérisque 239 (1996)

[1]曾清华,王栋知,王淀佐.聚合物-粘土矿物纳米复合材料.化工进展,1998,17(2):13~16.

[2]王立新,张楷亮,任丽,等.聚合物/层状硅酸盐纳米复合材料的研究进展.复合材料学报,2001,18(3):5~9.

[3] Giannalis E P.Polymer layered silicate nanocomposites.Adv Mater,1996,8(1):29~35.

[4] Alexandre M,Dubois P.Polymer-layered silicate nanocomposites:Preparation,properties and uses of a new class of materials.Mater Sci Eng,2000,Report,28(1~2):1~63.

[5]徐卫兵.聚合物/蒙脱土插层纳米复合材料的研究.中国科学技术大学,博士论文,2001.

[6]张琴.熔体插层聚丙烯纳米复合材料:形成过程、剥离机理、形态与性能.四川大学,博士论文,2002.

[7]袁昌来,董发勤.粘土/有机纳米复合粉体材料.中国非金属矿工业导刊,2003,(4):14~17.

[8]吕建坤.环氧树脂及高性能热塑性树脂与粘土插层复合的研究.浙江大学,博士论文,2001.

[9]须藤俊男,著.严寿鹤,刘万,贾克实,译.粘土矿物学.北京:地质出版社,1981.

[10] OlejnikSL,etal.JPhysChem,1968,72(1):241~249.

[11] Theng B K G,Churchman G J,Whitton J S,Claridge G G C.Comparison of Intercalation Methods for differentiating halloysite from kaolinite.Clays and Clay Minerals,1984,32(4):249~258.

[12] Thompson.J G.Interpretation of Solid State13Cand29Si nuclear Magnetic Resonance spectra of Kaolinite Intercalates.Clays and Clay Minerals,1985,33(3):173~180.

[13] Sugahara Y,Satokawa S,Kuroda K,Kato C.Evidence for the Formation of Interlayer Polyacrylonitrile in Kaolinite.Clays and Clay Minerals,1988,36(4):343~348.

[14] Sidheswaran P,Bhat A N,Ganguli P.Intercalation of Salts of Fatty Acids into Kaolinite.Clays and Clay Minerals,1990,38(1):29~32.

[15] Sugahara Y,Satokawa S,Kuroda K,Kato C.Preparation of a kaolinite-polyacrylamide intercalation compound.Clays and Clay Minerals,1990,38(2):137~143.

[16] Tunney J J,Detellier C.Preparation and characterization of two distinctet hylene glycol derivatives of kaolinite.Clays and Clay Minerals,1994,42(5):552~560.

[17] Tunney J J,Detellier C.Aluminosilicate nanocomposite materials.Poly(ethyleneglycol)-kaolinite intercalates.Chem.Mater.1996,8:927~935.

[18] Frost R L,Tran T H,Kristof J.FT-Raman spectroscopy of the lattice region of kaolinite and its intercalates.Vibrational Spectroscopy,1997,13:175~186.

[19] Frost R L,Kristof J.Intercalation of halloysite:a Raman Spectroscopic Study.Clays and Clay Minerals,1997,45(4):551~563.

[20] Frost R L,Tran T H,Kristof J.The structure of a intercalated ordered kaolinite-a Raman microscopy study.Clay Minerals,1997,32:587~596.

[21] Komori Y,Sugahara Y.A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite.J.Mater.Res,1998,13(4):930~934.

[22] Komori Y,Sugahara Y,Kuroda K.Thermal transformation of a kaolinite-poly(acrylamide)intercalation compound.J.Mater.Chem,1999,9:3081~3085.

[23] Gardolinski J E,Zamora P P,Wypych F.Preparation and Characterization of akaolinite-1-methyl-2-pyrrolidone Intercalation Compound.Journal of Colloid and Interface Science,1999,211:137~141.

[24] Itagaki T,Komori Y,Sugahara Y,Kuroda K.Synthesis of a kaolinite-poly(β-alanine)intercalation compound.J.Mater.Chem,2001,11:3291~3295.

[25] Komori Y,Sugahara Y.Kazuyuki Kuroda.Direct intercalation of poly(vinylpyrrolidone)into kaolinite by arefined guest displacement method.Chem.Mater,1999,11:3~6.

[26] Komori Y,Sugahara Y,Kuroda K.Intercalation of alkylamines and water into kaolinite with methanol kaolinite as an intermediate.Applied Clay Science,1999,15:241~252.

[27] Takenawa R,Komori Y,Hayashi S,Kawamata J,Kuroda K.Intercalation of nitroanilines into kaolinite and second harmonic generation.Chem.Mater,2001,13:3741~3746.

[28] Matsumura A,Komori Y,Itagaki T,Sugahara Y,Kuroda K.Preparation of a kaolinite-nylon 6 intercalation compound.Bull.Chem.Soc.Jpn,2001,74:1153~1158.

[29] Szilvia Papp,Anna Szucs,Imre Dekany.Colloid synthesis of monodisperse Pd nanoparticles in layered silicates.Solid State Ionics,2001,141~142:169~176.

[30] Patakfalvi R,Oszko A,Dekany I.Synthesis and characterization of silver nanoparticle/kaolinite composites.Colloids and Surfaces A:Physicochem.Eng.Aspects,2003,220:45~54.

[31]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.

[32]杨雅秀,张乃娴,苏昭冰,等.中国粘土矿物.北京:地质出版社,1994.

[33] Hayashi S.NMR Study of Dynamics and Evolution of Guest Molecules in Kaolinite/Dimethyl Sulfoxide.Clays and Clay Minerals,1997,45(5):724~732.

[34] Hayashi S.NMR Study of Dynamics of dimethyl Sulfoxide Molecules in Kaolinite/Dimethyl Sulfoxide Intercalation Compound.J.Phys.Chem,1995,99:7120~7129.

[35] Hayashi S,Ueda T,Hayamizu K,et al.NMR study of kaolinite.Ⅰ.29Si,27Al,1Hspectra.J Phys Chem,1992,96:10992~10928.

[36] Xie X L,Hayashi S.NMR study of kaolinite in tercalation compound with formamide and its derivatives.Ⅰ.Structure and orientation of guest molecules.J Phys Chem B,1999,103:5949~5955.

[37] Tunney J J,Detellier C.Aluminosilicate nanocomposite materials.Poly(ethyleneglycol)~kaolinite intercalates.Chem.Mater,1998,8:927~935.

[38] Komori Y,Sugahara Y.A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite.J.Mater.Res,1998,13(4):930~934.

[39] Komori Y,Sugahara Y,Kuroda K.Thermal transformation of a kaolinite-poly(acrylamide)intercalation compound.J.Mater.Chem,1999,9:3081~3085.

[40] Kelleher B P,Sutton D,O'Dwyer T F.The Effect of Kaolinite Intercalation on the Structural Arrangements of NMethylformamide and 1-Methyl-2-pyrrolidone.Journal of Colloid and Interface Science,2002,255:219~224.

[41]Frost R L,Kristof J,Horrath E,et al.JColloid Interface Sci,1999,412:380.

[42]王林江,吴大清,袁鹏,等.高岭石/甲酰胺插层的1H魔角旋转核磁共振谱.科学通报,2001,46(22):1910~1913.

[43] Tunney J J,Detellier C.Chemically modified kaolinite.Grafting of methoxy groups on the interlamellar aluminol surface of kaolinite.J.Mater.Chem,1996,6(10):1679~1685.

[44]赵顺平,夏华,张生辉.高岭石/有机插层复合材料的研究进展.材料科学与工程学报,2003,21(4):620~624.

[45]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.

[46] FrostRL,VanDerGaastSJ,Zbik M,Kloro eJT,Paroz G N.Birdwood kaolinite:a hihly ordered kaolinite that is difficult to intercalate-an XRD,SEM and Raman spectroscopic study.Applied Clay Science,2002,20:177~187.

[47]王林江,吴大清.高岭石有机插层反应的影响因素.化工矿物与加工,2001,(5):29~32.

[48]李伟东,黄建国,许承晃.高岭土-二甲亚砜夹层复合物的形成机理.华侨大学学报(自然科学版),1994,15(1):48~52.

[49]李学强,夏华.高岭土-乙酸钾夹层复合物制备.非金属矿,2002,25(4):22~23.

[50] Tunney J J,Detellier C.Preparation and Characterization of two Distinct Ethylene Glycol Derivatives of Kaolinite.Clays and Clay Minerals,1994,42(5),552~560.

[51] Sato M.Preparation of Kaolinite-Amino acid intrecalates derived from hydrated kaolinite.Clays and Clay Minerals,1999,47(6):793~802.

[52] Itagati A,Matsumura A,Kato M,et al.Journal of material of science letters,2001,20:1483~1484.

[53]沈忠悦,袁明永,叶瑛,杨帅杰.高岭石的夹层化合物及其剥片作用.非金属矿,2000,23(6):12~13.

[54]刘岚,罗远芳,贾德民.聚合物/高岭石嵌入纳米复合材料研究进展.合成橡胶工业,2002,25(3):190~193.

[55] Lawrence G,Ginanelis P.New polymer electrolyte nanocomposites:Melt intercalation of poly(ethyleneoxide)in micatype silicates.Adv Mater,1995,7(2):154~156.

[56] LiuYJ,Schindler J L,DeGroot D C,et al.Synthesis,structure,and reactions of poly(ethyleneoxide)/V2O5intercalative nanocomposites.Chem Mater,1996,8(2):525~534.

[57] Murray H H.Traditional and new applications for kaolin,smectite,and palygorskite:A general overview.Appl Clay Sci,2000,17(5~6):207~221.

[58] Balbir Singh,Woodlands,Ian Donald Richard Mackinnon,Ellengrove,Both of Australia.Modified Kaolins.US Patent 6022821,2000.

[59] John Gerard Thompson,Page;Ian Donald Richard Mackinnon,Ellengrove;Sasha Koun,Cook;Neil Gabbitas,Kambah,all of Australia.Kaolin derivatives.US Patent 5858081,1999.


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/343029.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-06
下一篇2023-05-06

发表评论

登录后才能评论

评论列表(0条)

    保存