1926年,德国物理学家H·Busch提出了关于电子在磁场中的运动理论。他指出:具有轴对称性的磁场对电子束来说起着透镜的作用。从理论上设想了可利用磁场作为电子透镜,达到使电子束会聚或发散的目的。
有了上述两方面的理论,1932年,德国柏林工科大学高压实验室的M.Knoll和E.Ruska研制成功了第1台实验室电子显微镜,这是后来透射式电子显微镜(transmission electron microscope,TEM)
的雏形。其加速电压为70kV,放大率仅12倍。尽管这样的放大率还微不足道,但它有力地证明了使用电子束和电磁透镜可形成与光学影像相似的电子影像。这为以后电子显微镜的制造研究和提高奠定了基础。
1933年,E.Ruska用电镜获得了金箔和纤维的1万倍的放大像。至此,电镜的放大率已超过了光镜,但是对显微镜有着决定意义的分辨率,这时还只刚刚达到光镜的水平。1937年,柏林工业大学的Klaus和Mill继承了Ruska的工作,拍出了第1张细菌和胶体的照片,获得了25nm的分辨率,从而使电镜完成了超越光镜性能的这一丰功伟绩。
1939年,E.Ruska在德国的Siemens公同制成了分辨率优于10nm的第1台商品电镜。由于E·Ruska在电子光学和设计第1台透射电镜方面的开拓性工作被誉为“本世纪最重要的发现之一”,而荣获1986年诺贝尔物理学奖。
除Knoll、Ruska以外,同时其他一些实验室和公司也在研制电镜。如荷兰的菲利浦(Philip)公司、美国的无线电公司(RCA)、日本的日立公司等。1944年Philip公司设计了150kV的透射电镜,并首次引入中间镜。1947年法国设计出400kV的高压电镜。60年代初,法国制造出1500kV的超高压电镜。1970年法国、日本又分别制成3000kV的超高压电镜。
进入60年代以来,随着电子技术的发展,特别是计算机科学的发展,透射电镜的性能和自动化程度有了很大提高。现代透射电镜(如日立公司的H-9000型)的晶格分辨率最高已达0.1nm,放大率达150万倍。人们借助于电镜不但能看到细胞内部的结构,还能观察生物大分子和原子的结构,应用也愈加广泛和深入。
扫描电镜(scanning electron microscope, SEM)作为商品出现则较晚,早在1935年,Kn-
oll在设计透射电镜的同时,就提出了扫描电镜的原理及设计思想。1940年英国剑桥大学首次试制成功扫描电镜。但由于分辨率很差、照相时间过长,因此没有立即进入实用阶段,至1965年英国剑桥科学仪器有限公司开始生产商品扫描电镜。80年代后扫描电镜的制造技术和成像性能提高很快,目前高分辨型扫描电镜(如日立公司的S-5000型)使用冷场发射电子枪,分辨率已达0.6nm,放大率达80万倍。
我国从50年代初开始研制透射电镜,1959年第1台透射电镜诞生于上海新跃仪表厂,此后中型透射电镜开始批量生产。目前国产透射电镜分辨率已达0.2nm,放大80万倍。扫描电镜也于70年代开始生产。国内主要生产电镜的厂家是:北京中科院科学仪器厂、上海新跃仪表厂、南京江南光学仪器厂等。
1、透射电子显微镜电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。
透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。
常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常是挂预处理过的铜网上进行观察。
2、扫描电镜的特点:有较高的放大倍数,2-20万倍之间连续可调;有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;试样制备简单。
生物:种子、花粉、细菌;
医学:血球、病毒;
动物:大肠、绒毛、细胞、纤维;
材料:陶瓷、高分子、粉末、金属、金属夹杂物、环氧树脂;
化学、物理、地质、冶金、矿物、污泥(杆菌)、机械、电机及导电性样品,如半导体(IC、线宽量测、断面、结构观察)电子材料等。
扩展资料
透射电镜的总体工作原理是:由电子枪发射出来的电子束,在真空通道中沿着镜体光轴穿越聚光镜,通过聚光镜将之会聚成一束尖细、明亮而又均匀的光斑,照射在样品室内的样品上;透过样品后的电子束携带有样品内部的结构信息,样品内致密处透过的电子量少,稀疏处透过的电子量多;
经过物镜的会聚调焦和初级放大后,电子束进入下级的中间透镜和第1、第2投影镜进行综合放大成像,最终被放大了的电子影像投射在观察室内的荧光屏板上;荧光屏将电子影像转化为可见光影像以供使用者观察。
扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接收、放大和显示成像,获得测试试样表面形貌的观察。
参考资料来源:百度百科-扫描电子显微镜
参考资料来源:百度百科-透射电子显微镜
1、放大率:
与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。
所以,SEM中,透镜与放大率无关。
2、场深:
在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。
3、作用体积:
电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。
4、工作距离:
工作距离指从物镜到样品最高点的垂直距离。
如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。
5、成象:
次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。
6、表面分析:
欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。
表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。
观察方法:
如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。
尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。
扩展资料:
SEM扫描电镜图的分析方法:
从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。
图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。
将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。
扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。
参考资料:百度百科-扫描电子显微镜
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)