大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中[2] 大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、value(价值)
大数据服务器
一台或多台计算机和数据库管理系统软件共同构成了数据库服务器,数据库服务器为客户应用提供服务,这些服务是查询、更新、事务管理、索引、高速缓存、查询优化、安全及多用户存取控制等
小南国永生花
以下为大家介绍几个代表性数据分析平台:1、 Cloudera
Cloudera提供一个可扩展、灵活、集成的平台,可用来方便的管理您的企业中快速增长的多种多样的数据,从而部署和管理Hadoop和相关项目、操作和分析您的数据以及保护数据的安全。Cloudera Manager是一个复杂的应用程序,用于部署、管理、监控CDH部署并诊断问题,Cloudera Manager提供Admin Console,这是一种基于Web的用户界面,是您的企业数据管理简单而直接,它还包括Cloudera Manager API,可用来获取集群运行状况信息和度量以及配置Cloudera Manager。
2、 星环Transwarp
基于hadoop生态系统的大数据平台公司,国内唯一入选过Gartner魔力象限的大数据平台公司,对hadoop不稳定的部分进行了优化,功能上进行了细化,为企业提供hadoop大数据引擎及数据库工具。
3、 阿里数加
阿里云发布的一站式大数据平台,覆盖了企业数仓、商业智能、机器学习、数据可视化等领域,可以提供数据采集、数据深度融合、计算和挖掘服务,将计算的几个通过可视化工具进行个性化的数据分析和展现,图形展示和客户感知良好,但是需要捆绑阿里云才能使用,部分体验功能一般,需要有一定的知识基础。maxcompute(原名ODPS)是数加底层的计算引擎,有两个维度可以看这个计算引擎的性能,一个是6小时处理100PB的数据,相当于1亿部高清电影,另外一个是单集群规模过万台,并支持多集群联合计算。
4、 华为FusionInsight
基于Apache进行功能增强的企业级大数据存储、查询和分析的统一平台。完全开放的大数据平台,可运行在开放的x86架构服务器上,它以海量数据处理引擎和实时数据处理引擎为核心,针对金融、运营商等数据密集型行业的运行维护、应用开发等需求,打造了敏捷、智慧、可信的平台软件。
5、网易猛犸
网易猛犸大数据平台使一站式的大数据应用开发和数据管理平台,包括大数据开发套件和hadoop发行版两部分。大数据开发套件主要包含数据开发、任务运维、自助分析、数据管理、项目管理及多租户管理等。大数据开发套件将数据开发、数据分析、数据ETL等数据科学工作通过工作流的方式有效地串联起来,提高了数据开发工程师和数据分析工程师的工作效率。Hadoop发行版涵盖了网易大数据所有底层平台组件,包括自研组件、基于开源改造的组件。丰富而全面的组件,提供完善的平台能力,使其能轻易地构建不同领域的解决方案,满足不同类型的业务需求。
6.知于大数据分析平台
知于平台的定位与当今流行的平台定位不一样,它针对的主要是中小型企业,为中小型企业提供大数据解决方案。现阶段,平台主打的产品是舆情系统、文章传播分析与网站排名监测,每个服务的价格单次在50元左右,性价比极高。
大数据分析工具有:
1、R-编程
R 编程是对所有人免费的最好的大数据分析工具之一。它是一种领先的统计编程语言,可用于统计分析、科学计算、数据可视化等。R 编程语言还可以扩展自身以执行各种大数据分析操作。
在这个强大的帮助下;语言,数据科学家可以轻松创建统计引擎,根据相关和准确的数据收集提供更好、更精确的数据洞察力。它具有类数据处理和存储。我们还可以在 R 编程中集成其他数据分析工具。
除此之外,您还可以与任何编程语言(例如 Java、C、Python)集成,以提供更快的数据传输和准确的分析。R 提供了大量可用于任何数据集的绘图和图形。
2、Apache Hadoop
Apache Hadoop 是领先的大数据分析工具开源。它是一个软件框架,用于在商品硬件的集群上存储数据和运行应用程序。它是由软件生态系统组成的领先框架。
Hadoop 使用其 Hadoop 分布式文件系统或 HDFS 和 MapReduce。它被认为是大数据分析的顶级数据仓库。它具有在数百台廉价服务器上存储和分发大数据集的惊人能力。
这意味着您无需任何额外费用即可执行大数据分析。您还可以根据您的要求向其添加新节点,它永远不会让您失望。
3、MongoDB
MongoDB 是世界领先的数据库软件。它基于 NoSQL 数据库,可用于存储比基于 RDBMS 的数据库软件更多的数据量。MongoDB 功能强大,是最好的大数据分析工具之一。
它使用集合和文档,而不是使用行和列。文档由键值对组成,即MongoDB 中的一个基本数据单元。文档可以包含各种单元。但是大小、内容和字段数量因 MongoDB 中的文档而异。
MongoDB 最好的部分是它允许开发人员更改文档结构。文档结构可以基于程序员在各自的编程语言中定义的类和对象。
MongoDB 有一个内置的数据模型,使程序员能够理想地表示层次关系来存储数组和其他元素。
4、RapidMiner
RapidMiner 是分析师集成数据准备、机器学习、预测模型部署等的领先平台之一。它是最好的免费大数据分析工具,可用于数据分析和文本挖掘。
它是最强大的工具,具有用于分析过程设计的一流图形用户界面。它独立于平台,适用于 Windows、Linux、Unix 和 macOS。它提供各种功能,例如安全控制,在可视化工作流设计器工具的帮助下减少编写冗长代码的需要。
它使用户能够采用大型数据集在 Hadoop 中进行训练。除此之外,它还允许团队协作、集中工作流管理、Hadoop 模拟等。
它还组装请求并重用 Spark 容器以对流程进行智能优化。RapidMiner有五种数据分析产品,即RapidMiner Studio Auto Model、Auto Model、RapidMiner Turbo Prep、RapidMiner Server和RapidMiner Radoop。
5、Apache Spark
Apache Spark 是最好、最强大的开源大数据分析工具之一。借助其数据处理框架,它可以处理大量数据集。通过结合或其他分布式计算工具,在多台计算机上分发数据处理任务非常容易。
它具有用于流式 SQL、机器学习和图形处理支持的内置功能。它还使该站点成为大数据转换的最快速和通用的生成器。我们可以在内存中以快 100 倍的速度处理数据,而在磁盘中则快 10 倍。
除此之外,它还拥有 80 个高级算子,可以更快地构建并行应用程序。它还提供 Java 中的高级 API。该平台还提供了极大的灵活性和多功能性,因为它适用于不同的数据存储,如 HDFS、Openstack 和 Apache Cassandra。
6、Microsoft Azure
Microsoft Azure 是领先的大数据分析工具之一。Microsoft Azure 也称为 Windows Azure。它是 Microsoft 处理的公共云计算平台,是提供包括计算、分析、存储和网络在内的广泛服务的领先平台。
Windows Azure 提供两类标准和高级的大数据云产品。它可以无缝处理大量数据工作负载。
除此之外,Microsoft Azure 还拥有一流的分析能力和行业领先的 SLA 以及企业级安全和监控。它也是开发人员和数据科学家的最佳和高效平台。它提供了在最先进的应用程序中很容易制作的实时数据。
无需 IT 基础架构或虚拟服务器进行处理。它可以轻松嵌入其他编程语言,如 JavaScript 和 C#。
7、Zoho Analytics
Zoho Analytics 是最可靠的大数据分析工具之一。它是一种 BI 工具,可以无缝地用于数据分析,并帮助我们直观地分析数据以更好地理解原始数据。
同样,任何其他分析工具都允许我们集成多个数据源,例如业务应用程序、数据库软件、云存储、CRM 等等。我们还可以在方便时自定义报告,因为它允许我们生成动态且高度自定义的可操作报告。
在 Zoho 分析中上传数据也非常灵活和容易。我们还可以在其中创建自定义仪表板,因为它易于部署和实施。世界各地的用户广泛使用该平台。此外,它还使我们能够在应用程序中生成评论威胁,以促进员工和团队之间的协作。
它是最好的大数据分析工具,与上述任何其他工具相比,它需要的知识和培训更少。因此,它是初创企业和入门级企业的最佳选择。
以上内容参考 百度百科——大数据分析
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)