氧化亚铜的电化学制备的目的和意义

氧化亚铜的电化学制备的目的和意义,第1张

关于氧化亚铜的电化学制备的目的和意义相关资料如下

氧化亚铜是一种性能优异的p型半导体材料,其带隙宽度与可见光波长范围相对应,适合被太阳光直接激发而具有光催化和光电特性,非常具有应用潜力。但是氧化亚铜基光催化和光电器件并没有得到普遍应用,原因是受现有方法和工艺的限制,氧化亚铜的制备成本难以降低、制备过程较为繁复,加之本身量子效率不高,实际性能很难令人满意。因此,探索和丰富氧化亚铜的制备手段,并研究制备工艺与氧化亚铜自身属性和应用性能之间的关系,对于拓展氧化亚铜基光催化和光伏材料的应用以及能源产业的优化都具有重要的意义。从理论上讲,氧化亚铜的量子效率可以通过两种方式提高,一是通过利用异质结之间的势垒来对光生电子-空穴对实现有效分离,二是减小氧化亚铜的晶粒尺寸来阻碍光生电子-空穴对的复合。所以,本文探索了阳极氧化和电沉积等两种电化学制备方法,分别在铜箔和导电玻璃表面制备了氧化亚铜薄膜,表征了其光催化和光电性能,并重点探讨了制备工艺、薄膜成分和形貌以及光催化和光电性能方面的相互作用机理。本文的主要研究内容如下:1.利用阳极氧化+水解/还原两步法在铜箔上制备了氧化亚铜薄膜。研究了阳极氧化过程中氯化铵电解液pH值和浓度、电流密度、温度以及搅拌等工艺条件对于阳极表面成分和形貌的影响,并结合固-液界面双电层动力学、热力学模型和电化学表征数据对于影响机理进行了分析。研究表明:在阳极氧化过程中,当电解液为酸性时,铜箔表面主要生成氯化亚铜薄膜,当电解液为碱性时,则生成氢氧化铜薄膜,因为氯化铵电解液的pH值升高无论是在动力学方面还是热力学方面都更适合氢氧化铜的生成电解液浓度升高会使产物的析出电流增加,电极表面双电层中的电荷传输和离子结合速率都得到提升,有利于氢氧化铜的生成较高的电解液温度有利于氢氧化铜的水解反应,同时有利于氯化亚铜晶粒的长大在阳极氧化过程中加入搅拌是防止钝化膜生成的一个必要手段,但是搅拌速度不宜过快。阳极氧化完成后,将制得的氯化亚铜薄膜浸入双氧水稀溶液并光照,可以利用水解和发泡反应将氯化亚铜薄膜转化为氧化亚铜海绵状多孔纳米晶薄膜制得的氢氧化铜薄膜则可以通过在还原性气氛下热处理或与葡萄糖溶液反应来进行还原,转化为氧化亚铜。2.对氧化亚铜薄膜的光催化性能进行了表征。薄膜在90分钟内对甲基橙的光催化降解率达到了60%~70%氧化亚铜薄膜还可以光催化加速氧化剂对亚甲基蓝等有机染料的氧化脱色,使得脱色速率提高了一倍以上氧化亚铜薄膜在光照下对于污染河水水样中的藻类具有非常显著的杀灭效果,4小时内对蓝藻、绿藻和杂藻的杀灭率分别达到了100%、100%和90.9%同时,对水样中有机污染物也起到了明显的降解作用,4小时内水样中总碳、总磷和总氮含量分别下降了10.6%、55.4%和18.4%。氧化亚铜薄膜还在光解水析氧反应中具有很高的催化活性,8小时内的单位质量产氧量达到了172.90~233.27μmol每毫克氧化亚铜。

分类: 外语/出国

问题描述:

SEM的原理是什么?

解析:

(SEM)扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到

1956年开始生产商品扫描电镜。近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。

一.扫描电镜的特点

和光学显微镜及透射电镜相比,扫描电镜具有以下特点:

(一) 能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。

(二) 样品制备过程简单,不用切成薄片。

(三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。

(四) 景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。

(五) 图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。

(六) 电子束对样品的损伤与污染程度较小。

(七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。

二.扫描电镜的结构和工作原理

(一) 结构

1.镜筒

镜筒包括电子枪、聚光镜、物镜及扫描系统。其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。

2.电子信号的收集与处理系统

在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm至

几十nm的区域,其产生率主要取决于样品的形貌和成分。通常所说的扫描电镜像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。检测二次电子的检测器(图15(2)的探头是一个闪烁体,当电子打到闪烁体上时,1就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,电流信号转变成电压信号,最后被送到显像管的栅极。

3.电子信号的显示与记录系统

扫描电镜的图象显示在阴极射线管(显像管)上,并由照相机拍照记录。显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。

4.真空系统及电源系统

扫描电镜的真空系统由机械泵与油扩散泵组成,其作用是使镜筒内达到 10(4~10(5托的真空度。电源系统供给各部件所需的特定的电源。

(二) 工作原理

从电子枪阴极发出的直径20(m~30(m的电子束,受到阴阳极之间加速电压的作用,射向镜筒,经过聚光镜及物镜的会聚作用,缩小成直径约几毫微米的电子探针。在物镜上部的扫描线圈的作用下,电子探针在样品表面作光栅状扫描并且激发出多种电子信号。这些电子信号被相应的检测器检测,经过放大、转换,变成电压信号,最后被送到显像管的栅极上并且调制显像管的亮度。显像管中的电子束在荧光屏上也作光栅状扫描,并且这种扫描运动与样品表面的电子束的扫描运动严格同步,这样即获得衬度与所接收信号强度相对应的扫描电子像,这种图象反映了样品表面的形貌特征。第二节 扫描电镜生物样品制备技术大多数生物样品都含有水分,而且比较柔软,因此,在进行扫描电镜观察前,要对样品作相应的处理。扫描电镜样品制备的主要要求是:尽可能使样品的表面结构保存好,没

有变形和污染,样品干燥并且有良好导电性能。

[Last edit by SeanWen]

SEM是扫描电子显微镜,最高可放大至20万倍左右,用二次电子成像的原理来观察某种物质的微观形貌。EDS是能谱仪,是每种元素对应的电子能不同,来鉴别元素,通常是和SEM结合使用,也就是说在SEM上安装EDS附件,在观看形貌时,选择一定区域用EDS打能谱,也就知道了该区域的元素组成。XRD是X射线衍射仪,其原理是高压下,阴极发出的电子形成高能电子束,轰击阳极靶材(通常是Cu),靶材的内部电子能量升高,被激发出来,当它回到基态的过程中,多余的能量以X射线、俄歇电子等形式释放出来。XRD收集的是其中的X射线,X射线扫到样品上,会根据布拉格方程产生衍射角,衍射峰。每种物质(不同样品)的衍射峰不同,因此通常用来鉴别物相,也会根据峰面积算半定量。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/347911.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-07
下一篇2023-05-07

发表评论

登录后才能评论

评论列表(0条)

    保存