工业使用的铂氧化铝催化剂负载的铂纳米颗粒的粒径是多大?最好有透射电镜图片

工业使用的铂氧化铝催化剂负载的铂纳米颗粒的粒径是多大?最好有透射电镜图片,第1张

本工作分别以金属氧化物MgAl_2O_4、Al_2O_3、CeO_2为载体,Pt为活性组分,制备了负载型纳米催化剂,利用XRD、TEM、SEM、XPS和BET等手段对它们的组成、形貌及结构等进行了表征,并将这些催化剂应用于苯甲醛及其衍生物催化加氢反应中。完成的研究工作有以下三方面: (1)以PVP为稳定剂,采用乙醇回流还原法制备出金属Pt纳米粒子,然后采用胶体沉积法将Pt纳米粒子负载到镁铝尖晶石上。用UV-Vis、XRD、TEM和SEM-EDX等手段对它们进行了表征。制备出的PVP稳定的Pt纳米粒子平均粒径为2.8 nm,Pt纳米粒子高度均匀地分散在MgAl_2O_4载体表面。在温和的反应条件下,负载型Pt/MgAl_2O_4催化剂对苯甲醛及其衍生物催化加氢生成苯甲醇及其衍生物表现出较高的活性和选择性。根据动力学实验结果计算,Pt/MgAl_2O_4催化剂对间苯氧基苯甲醛加氢生成间苯氧基苯甲醇反应的动力学表达式为21该反应的活化能为35.6 kJ mol-1。 (2)以Al_2O_3为载体,Pt为活性组分,稀土元素(La、Ce、Pr、Nd、Sm、Eu、Gd)为助剂,制备了一系列稀土修饰的Pt/Al_2O_3催化剂。利用XRD、TEM、SEM、XPS、BET等手段对它们进行了表征,Pt(0.5)Ce(0.25)/A(I)催化剂上Pt颗粒均匀地分布在载体表面。考察了催化剂的制备方法以及稀土元素的添加对间苯氧基苯甲醛加氢性能的影响,Pt(0.5)Ln(0.25)/A(I)催化剂活性明显高于Pt(0.5)Ln(0.25)/A(II)催化剂的活性La、Ce、Pr、Nd、Sm的添加有利于Pt/Al_2O_3催化剂活性的提高,而Gd、Eu的添加则降低了Pt/Al_2O_3催化剂的活性。 (3)以硝酸铈、醋酸铈为铈源,采用无模板剂水热法制备了CeO_2,用XRD、SEM、BET等手段对它们进行了表征。结果发现,通过改变反应原料和水热条件得到一系列不同形貌和比表面积的CeO_2。并以它们为载体制备了一系列Pt/CeO_2催化剂,研究载体的合成过程对载体形貌和比表面积的影响以及载体的结构性能对催化剂活性的影响。在Ce(NO3)3/NaOH/H2O_2体系下制备的CeO_2具有最大的比表面积,用其做载体得到的Pt/CeO_2催化剂具有最高的催化活性。反应9小时后,间苯氧基苯甲醛加氢转化率为88.3%

最主要的区别是:SEM是通过反射的方式采集信号

TEM是通过透射的方式采集信号

1、样品属性大概必须都是固体,干燥、无油、尽量导电。TEM获得材料某个剖面的组织形态,sem获得的是材料表面或者是断面的组织形态。透射电镜不可以看表面形貌,而扫描电镜所观察的断面或者表面的组织形态可以间接表征材料的内部某个剖面的的组织形态。TEM分辨率高,可以观察原子晶格像,而扫描电镜分辨率低,最多只能表征由几十或者几百个原子形成的纳米相--可以叫做晶粒或者功能团。

2、扫描电镜制备简单,可直接观察样品表面或者断面;TEM样品制备复杂精细,材料必须用专用制样设备,制备成几个微米甚至100nm厚度的薄片

3、材料有里有面,全方位了解材料的微观组织结构需要从低倍到高倍的表征。

介孔Pt纤维。左起依次是场发射扫描式电子显微镜、高分辨率扫描式电子显微镜、透射电子显微镜拍摄的照片。

楼主看出用途的差别了吗?

照片a 只能用扫描看,不能用透射。照片b和c是照片a中的一个纤维,可以用扫描也可以用透射观察!有差别但很相似

不滴在有碳膜的一面怎么行呢?铜网的孔径相对于纳米材料是巨大的。况且有没有碳膜很好区分的,说的俗一点,就是有碳膜的看起来像是用铅笔在铜网上涂过一样。反正我做了这么久的TEM,制样时都是滴在有碳膜的一侧。

利用非共价修饰的方法,先在碳纳米管表面包裹上表面活性剂十六烷基三甲基溴化铵(CTAB)和聚丙烯酸钠(PAA),然后原位修饰上铜和银纳米粒子,制备出MWCNT/CTAB/PAA/M(M:Cu或AS)纳米复合材料,最后通过XRD、SEM和TEM等技术对其进行表征.结果表明,利用这种简单的层层白组装方法能够在碳管上均匀地修饰金属纳米粒子,并且这两种金属纳米粒子的尺寸都小于5

nm.


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/348004.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-07
下一篇2023-05-07

发表评论

登录后才能评论

评论列表(0条)

    保存