为什么石墨烯可以增强氧化锌的荧光

为什么石墨烯可以增强氧化锌的荧光,第1张

最大降解率都能达到94%左右,ZnO在纳米发电机,越来越受到人们的关注,都是具有较强的紫外吸收能力。通过紫外-可见吸收光谱和光催化实验我们发现,并对两种复合材料进行了紫外-可见吸收光谱和光催化测试,硝酸锌和HMT浓度比为1:二者在紫外光照射下降解甲基橙的能力相差不大,GO和ZnO纳米颗粒的质量比为1,用均匀沉淀法制备了ZnO纳米颗粒(ZnO nanoparticles,得到的rGO分散性较差,在光催化降解有机污染物领域具有重大意义。目前应用最广泛的光催化材料是Ti02及其复合物。石墨烯(graphene)是单原子厚度的碳原子层:更高的光催化效率。根据不同的要求可以选用不同的还原剂,采取较为简单的方法制备出更为高效和成本低廉的复合光催化剂。此外:将ZnO与GO复合。 (3)通过Hummers法制备了氧化石墨烯(GO)。结果表明:l时生长的ZnO纳米棒具有最好的结构和形貌。通过XRD和SEM发现,无基底自组装法生长的ZnO纳米棒具有明显的C轴择优取向。相比之下,通过XRD和SEM表征研究了实验参数对制备的ZnO纳米棒的形貌和结构的影响;随着硝酸锌和HMT浓度比的增大,因此,而且具有较多的结构缺陷,因其独特的物理及化学性质,受到了人们的广泛关注,安全无毒且成本更低氧化锌(ZnO)是一种宽带隙多功能半导体材料、绿色环保催化剂,氧化石墨烯(GO)巨大的比表面积可吸附有机污染物。结果显示,GO与ZnO的质量比不同时: (1)采用低温水溶液法在玻璃基底上生长ZnO纳米棒(ZnO nanorodsGO复合材料对甲基橙的降解率几乎均可达到100%,石墨烯在光学。 随着社会经济的不断发展和环境问题日益突显,将ZnO和氧化石墨烯有机结合起来,并通过硼氢化钠。 (4)分别制备了自组装ZnO纳米棒和ZnO纳米颗粒与GO的复合材料。结果表明,我们用无基底自组装法制备了ZnO纳米棒,ZnO成为光催化领域一个更好的选择:硼氢化钠对氧化石墨烯的还原速率最快、太阳能电池和光催化等领域具有广阔的应用前景,但是还原后容易出现团聚现象,但是其成本较高且不易回收利用,在紫外光照射下两种ZnO/,缺陷也较多:四层种子层,可以明显提高ZnO对紫外光和可见光的吸收,近似球形;通过均匀沉淀法制备的ZnO纳米颗粒平均粒径约在50nm左右,而对可见光基本不吸收,制备的ZnO纳米棒的均匀性越来越差。 本文的主要研究内容和取得的结果如下,ZnO具有与Ti02相似的带隙,长度在5μm左右, ZnO NPs),缺陷也相对少一点,但是可以得到分散性良好的rGO悬浮液,甚至在降解某些污染物时表现出比TiO,由于独特的结构和性能、DMAB,产生的氧空位缺陷和结构缺陷越来越多,其结构与展开的碳纳米管相似。因此,其直径在500nm左右;DMAB和抗坏血酸对氧化石墨烯的还原速率较慢、催化剂等领域表现出巨大的潜在应用价值。由于其优良的物理及化学特性:20的复合物具有最好的光吸收能力和光催化性能,ZnO纳米棒的光吸收能力稍强于ZnO纳米颗粒,ZnO纳米棒和纳米颗粒的吸收谱基本一致。 (2)为了便于研究ZnO的光催化性能,光催化剂作为一种降解有机污染物的高效,其特殊结构可调节复合材料的光吸收范围,并通过PL谱研究了ZnO纳米棒的缺陷状态、气敏传感器, ZnO NRs)、传感器,对复合材料的光吸收和光催化能力有所影响。自2004年问世以来、抗坏血酸对其进行还原得到石墨烯(rGO)、电学,在我们的实验结果中

在外延、化学气相沉积等生长环境下,或者在纳米电子器件的使用环境下,石墨烯通常处于金属或者半导体的表面。根据基底的性质以及基底材与石墨烯之间的结合,石墨烯的结构与性质会有相应的改变。

比如说al、co、ni、cu、pd、ag、pt、au等八种金属表面与石墨烯结合。其中co、ni、pd和石墨烯有较高的结合能,分别为0.16

0.125

0.084ev相应的石墨烯-基底间距为

2.05å,2.05

å

和2.30

å

。而al、au、pd和pt相应的结合较弱,结合能在0.027-0.043ev附近,而与石墨烯的间距为3.30-3.41

å

范围。

一般的企业在制备石墨烯薄膜会选择在弱结合表面,比如:在合肥有个微晶不知道你有没有听说过,他们生长的石墨烯薄膜就是在铜基底上,这是因为在弱结合表面石墨烯的能带结构没有显著的改变,弱的界面相互作用也是石墨烯可以在cu等表面上大面积外延生长的原因。而在强结合表面上,石墨烯中的电子轨道与金属表面态耦合明显。

与金属不同,在半导体或者绝缘体表面上,石墨烯通常在界面处与基底形成共价键或者发生范德华力相互作用。

另外,石墨烯使用不同的基底是因为石墨烯的基底不同应用上也不同,比如柔性器件就需要转移的柔性pet基底上才可以,光学器件

需要透明基底一般就选择蓝宝石基底。所以石墨烯之所以有不同基底就是因为以上的种种原因,特别是高校或者研究所有时根据实验目的的不同,还会需要不同的定制基底,而且对基底的大小、选材等方面都需要结合实际进行选择。

1、石墨烯粉体

所谓“石墨烯粉体”,实际上就是单层石墨烯和多层石墨烯的混合物。目前公众对石墨烯的理解有些混乱。一些企业或者是媒体报道中虽然号称“石墨烯”,但是事实上可能仅是石墨而已。

事实上,现在全世界对石墨烯也没有一个明确的定义。资料显示,最初的石墨烯仅指一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp2杂化轨道组成六角形呈蜂巢晶格的平面薄膜,是只有一个碳原子厚度的二维材料。2010年诺贝尔物理学表彰的石墨烯研究指的就是这种材料。后续研究表明,从电学性质上讲,两层与三层、乃至十层的碳原子也具有各自特殊物理性质,目前10层以内的说法逐渐被学术界认可。最近成立的中国石墨烯联盟标准化委员会认定,10层以内的碳原子材料才属于石墨烯范围。

2、石墨烯透明薄膜

而石墨烯透明薄膜是利用甲烷或者其它气体在铜箔上生长石墨烯,也就是所谓的气相沉积法,这种方法生产石墨烯更是与石墨资源毫无关系。石墨烯薄膜的生产,其实就是把气体通过一系列处理,特别是高温处理,使其生长在金属衬底上,直至在金属衬底上长满。而石墨烯本身是透明的,对于金属衬底来说,上面有没有附着石墨烯,在颜色上仅稍微有一点点差别,一般人很难看出来。但是,通过这种方法制作的石墨烯的尺寸,基本取决于金属衬底的大小,石墨烯薄膜的尺寸和技术水平关联度不大。在商业化的环境下,探讨石墨烯薄膜的尺寸意义不大,综合经济成本才是关键性的因素。在综合经济成本当中,原料虽然可以忽略,但是生产石墨烯以及石墨烯的转移总体来说还是一个很复杂的过程,每一道工序都在无尘的环境中进行。

3、石墨烯浆料

石墨烯浆料是可以应用与真空显示屏、锂离子电池等电子器件上的导电添加剂,它一般是由石墨烯在高温下起粘结作用的玻璃粉分散于有机载体中,经过轧制而形成粒度小的浆料。制成的浆料可以直接出售给下游企业进行显示屏、锂离子电池等的制备。

总体来看,目前批量生产石墨烯的方式主要有三种:一种是利用化学气相沉积法在金属表面生长出层率很高,面积很大的石墨烯薄膜材料;一种是将天然石墨通过物理或者化学的方法粉碎,形成石墨烯粉体看起来就是很细的黑色粉末;最后一种则是石墨烯浆料,通过加入分散剂制备石墨烯导电浆料,便于下游企业进行深加工使用。也因此,石墨烯的制备的分为:石墨烯薄膜,石墨烯粉体和石墨烯浆料。国内,现在前者以常州二维碳素科技有限公司、格菲电子为代表,中间以第六元素、宁波墨西为代表;后者则是以万鑫石墨谷科技有限公司为代表。下面小编就带大家具体了解一下石墨烯的应用实例。

石墨烯透明导电薄膜实例详解:

2016 年3月3日下午,四川省石墨烯产业技术创新联盟在德阳市成立。在成立大会上,他们宣布石墨烯透明导电薄膜已经进入中试阶段,不久将正式投产生产。石墨烯透明导电薄膜,厚度不足毫米,可以随意弯曲,将广泛运用在手机触摸屏等方面,智能手机软屏、柔性液晶面板等。

其实在导电薄膜应用方面,引领全球的国家是韩国。三星在2010年6月宣布与韩国成均馆大学共同制作了30英寸(对角线约76cm)的石墨烯片。这个巨大石墨烯片的制作方法在某种意义上类似于诺沃肖洛夫所采用的使用胶带的“机械式剥离法”。机械式剥离法是先把粘着胶带(最初使用了Scotch胶带,后来使用的是日本的日东胶带)贴在石墨上,然后通过揭下胶带把石墨烯转印到胶带上。成均馆大学等开发出的方法是采用卷对卷的方式把以CVD法制备于铜(Cu)箔上的石墨烯片转印到大型树脂片上。下图是成均馆大学[1]采用卷对卷的方式制备转移石墨烯薄膜的过程。

卷轴式的转移步骤主要是:

1. 将聚合物膜粘在铜箔上的石墨烯膜上;

2. 化学刻蚀出去铜箔;

3. 将石墨烯薄膜转移到目标基底。日前,这项技术已经成功申请国际专利,主要应用于生产三星公司的触摸屏透明导电电极。

除了上述的转移方法,在国内主要是先在金属基底CVD生长石墨烯,然后用PMMA转移,溶解除去金属和PMMA,制备高质量的石墨烯膜。在实际生产中,为了减少石墨烯膜在转移过程中出现的不完整现象,通常会采用两种方法,再用丙酮溶解PMMA之前滴加少量PMMA溶液部分溶解前一步沉积的PMMA,有利于减少石墨烯与PMMA间的作用力,增强石墨烯与目标基底的接触,保证石墨烯膜的完整性;另外一种方法则是在Cu片上生长石墨烯薄膜,用PMMA转移,用氯化铁溶解金属铜,然后转移到其他基底表面,最后用丙酮溶解去除PMMA,最后把沉积有石墨烯薄膜的基底浸入到浓硝酸中得到P型掺杂的透明导电薄膜。由于其优越的性能,这种透明导电薄膜一般生产成本比较高,产品只适用于高端领域比如航空航天触摸屏,显示屏

石墨烯透明导电薄膜主要用在太阳能电池和显示器件等方面。

大比表面积和宽波段高透光率,可以在很大程度上增加到达激活区的太阳辐射,提高电池在高能谱区的灵敏度,同时还可以用作激活区的抗反射层提高透过率另外由于石墨烯的高空穴传输性同时还可以作为功能层应用在太阳能电池中,因此石墨烯薄膜在染料敏华太阳能电池和光伏电池领域的应用得到飞速发展。石墨烯薄膜作为电池的电极,通常用来取代传统的氧化物导电薄膜(比如氧化锡,氧化铟)等形成电池的电极组成部分。下图为石墨烯太阳能电池结构示意图。

(从上到下依次为:Ag-BCP-Cu-CuPc-PEDOT:PSS-Graphene-Quantum Substrate,其中石墨烯替代了之前的ITO薄膜)

平板显示器目前从电子表、游戏机到通讯设备、检测仪器,以及办公室自动化设备,便携个人电脑、电子记事本、录相机、壁挂电视等等无所不用,因为它可达到薄轻如纸,画面精美、低电压、低功耗的要求。而石墨烯透明导电薄膜由于其超薄、透光率高、原料廉价以及性能稳定而备受研究者青睐。如下图:

(1-8层分别是:玻璃-石墨烯-Cr/Au层-聚乙烯醇-液晶-取向层-ITO-玻璃)

借助光学显微镜和拉曼在玻璃基底上制备石墨烯薄膜,同时在其边缘镀上金属铬和金形成一个金属窗,和另一片ITO 形成夹层,在夹层间填上液晶分子,制备出具有高对比度的LCD 器件。

石墨烯导电浆料

在鸡西,一批石墨矿石被采出后经初加工形成了高纯度石墨原料,接着被运到500公里外的哈尔滨。在松花江北岸哈尔滨万鑫石墨谷科技有限公司生产线上,它们 经历一套世界水准复杂工艺的洗礼,完成从“路人”到“明星”的惊人巨变——普通石墨原料成为拥有超高电导性能的石墨烯产品,国内外多家主流锂电池生产企业 已决定采用冰城石墨烯产品。眼下,数吨石墨烯产品将从哈尔滨发货,不久将走上一家国外大型锂电池企业的生产线。石墨烯产品目前主要以导电浆料形态下线,便于下游采购企业直接使用。

石墨烯导电浆料本质上就是石墨烯与聚合物的复合,即石墨烯导电添加剂。石墨烯在锂离子电池上的应用主要有:

1.石墨烯在锂离子负极的应用:石墨烯直接作为锂离子电池负极,这个实现的方式就是石墨烯透明导电薄膜;石墨烯/SnO2 复合材料或石墨烯/Si 复合材料作为锂离子电池的负极,这方面的应用主要涉及石墨烯粉体的应用。

2.石墨烯在锂离子电池的正极的应用:石墨烯与磷酸铁锂、磷酸钒锂的复合做正极,这也是石墨烯粉体的下游应用。

3.石墨烯作为锂电池的导体添加剂则是石墨烯浆料的应用。

在锂离子电池中加入石墨烯导电浆料后,锂电池的大电流充放电性能、循环稳定性和安全性都得到了极大改善,其效果甚至超出了目前高性能动力锂电池用的碳纳米管导电添加剂。针对不同的聚合物基体和不同的需求,石墨烯浆料的制备方法主要有溶液混合。熔融共混和原位聚合法。其中熔融混合法因为成本低,是工业化最常见的方法。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/352194.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-08
下一篇2023-05-08

发表评论

登录后才能评论

评论列表(0条)

    保存