sem的模型介绍

sem的模型介绍,第1张

SEM简单介绍,以下资料来源

因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。

一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。

历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).

SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。

因果关系:

究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。

举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:

3. 这时还有可能出现更多的潜在变量:

这里我又举另外一个例子,回归模型

在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。

我们在举另外一个例子“路径分析”

路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。

在这里我们总结一下:

回归分析简单的说就是:X真的影响Y 吗?

路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。

在这里要提一下因素模型(factor model)

在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。

举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。

相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。

这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。

https://www.sohu.com/a/386218186_698752

目前,空间计量经济学研究包括以下四个感兴趣的领域:

计量经济模型中空间效应的确定; 合并了空间影响的模型的估计;空间效应存在的说明、检验和诊断;空间预测。

空间计量经济学模型有多种类型(Anselin,et al. 2004)。 首先介绍纳入了空间效应(空间相关和空间差异)、适用于截面数据的空间常系数回归模型,包括空间滞后模型(Spatial Lag Model,SLM)与空间误差模型(Spatial Error Model,SEM)两种,以及空间变系数回归模型——地理加权回归模型(Geographical Weighted Regression,GWR)。适用于时间序列和截面数据合成的空间面板数据计量经济学模型将在以后予以介绍。

空间滞后模型(Spatial Lag Model,SLM)主要是探讨各变量在一地区是否有扩散现象(溢出效应)。其模型表达式为:参数 反映了自变量对因变量的影响,空间滞后因变量 是一内生变量,反映了空间距离对区域行为的作用。区域行为受到文化环境及与空间距离有关的迁移成本的影响,具有很强的地域性(Anselin et al.,1996)。由于SLM模型与时间序列中自回归模型相类似,因此SLM也被称作空间自回归模型(Spatial Autoregressive Model,SAR)。

空间误差模型(Spatial Error Model,SEM)存在于扰动误差项之中的空间依赖作用,度量了邻近地区关于因变量的误差冲击对本地区观察值的影响程度。由于SEM模型与时间序列中的序列相关问题类似,也被称为空间自相关模型(Spatial Autocorrelation Model,SAC)。

估计技术:鉴于空间回归模型由于自变量的内生性,对于上述两种模型的估计如果仍采用OLS,系数估计值会有偏或者无效,需要通过IV、ML或GLS、GMM等其他方法来进行估计。Anselin(1988)建议采用极大似然法估计空间滞后模型(SLM)和空间误差模型(SEM)的参数。

空间自相关检验与SLM、SEM的选择:判断地区间创新产出行为的空间相关性是否存在,以及SLM和SEM那个模型更恰当,一般可通过包括Moran’s I检验、两个拉格朗日乘数(Lagrange Multiplier)形式LMERR、LMLAG及其稳健(Robust)的R-LMERR、R-LMLAG)等形式来实现。由于事先无法根据先验经验推断在SLM和SEM模型中是否存在空间依赖性,有必要构建一种判别准则,以决定哪种空间模型更加符合客观实际。Anselin和Florax(1995)提出了如下判别准则:如果在空间依赖性的检验中发现LMLAG较之LMERR在统计上更加显著,且R-LMLAG显著而R-LMERR不显著,则可以断定适合的模型是空间滞后模型;相反,如果LMERR比LMLAG在统计上更加显著,且R-LMERR显著而R-LMLAG不显著,则可以断定空间误差模型是恰当的模型。

除了拟合优度R2检验以外,常用的检验准则还有:自然对数似然函数值(Log likelihood,LogL)、似然比率(Likelihood Ratio,LR)、赤池信息准则(Akaike information criterion,AIC)、施瓦茨准则(Schwartz criterion,SC)。对数似然值越大,AIC和SC值越小,模型拟合效果越好。这几个指标也用来比较OLS估计的经典线性回归模型和SLM、SEM,似然值的自然对数最大的模型最好。

空间变系数回归模型及估计:就目前国内外的研究来看,大多直接假定横截面单元是同质的,即地区或企业之间没有差异。传统的OLS只是对参数进行“平均”或“全域”估计,不能反映参数在不同空间的空间非稳定性(吴玉鸣,李建霞,2006;苏方林,2007)。 当用横截面数据建立计量经济学模型时,由于这种数据在空间上表现出的复杂性、自相关性和变异性,使得解释变量对被解释变量的影响在不同区域之间可能是不同的,假定区域之间的经济行为在空间上具有异质性的差异可能更加符合现实。空间变系数回归模型(Spatial Varying-Coefficient Regression Model)中的地理加权回归模型(Geographical Weighted Regression,GWR)是一种解决这种问题的有效方法。 、空间计量主要命令

spmat 生成空间权重矩阵

spatwmat 用于定义空间权重矩阵

spatgsa 用于全局空间自相关检验

gsa表示global spatial autocorrelation

spatlsa 进行局部空间自相关检验

lsa表示local spatial autocorrelation

spatcorr 考察空间自相关指标对距离临界值d的依赖性

spatdiag 针对ols回归结果,考察是否存在空间效应

spatreg 估计空间滞后与空间误差模型

空间面板主要命令为:help xsmle

Spatial Autoregressive (SAR) model

xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(sar) [SAR_options]

Spatial Durbin (SDM) model

xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(sdm) [SDM_options]

Spatial Autocorrelation (SAC) model

xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) emat(name) model(sac) [SAC_options]

Spatial Error (SEM) model

xsmle depvar [indepvars] [if] [in] [weight] , emat(name) model(sem) [SEM_options]

Generalized Spatial Panel Random Effects (GSPRE) model

xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(gspre) [emat(name) GSPRE_options]

一般我们论文分析有很多个题项时,也就是多变量时,建立SEM结构化方程时 ,如果没有坚实的理论基础支撑,不清楚那些变量分为一个组时,题项对应哪个因子。一般可以先用EFA再在此基础上用 CFA。 (探索性因素分析用spss软件做,验证性因素分析用amos软件。) 探索性因子分析可以实现用少量因子反映大量问卷题目的信息,从而实现降低维度,便于分析的目的,并对因子命名用于后续分析。

前面的SPSS分析方法-因子分析中,也提到因子分析的前提条件 : KMO检验和巴特利特检验: 用于检查变量间的偏相关性,取值在0-1之间。KMO值越接近于1,因子分析效果就好。一般KMO值0.9以上极适合做因子分析,0.8以上适合做因子分析,0.7以上尚可,0.6以上勉强度可以,0.5以上不适合,0.5以下非常不适合。实际运用中,在0.7以上,效果比较好;在0.5以下时,不适合应用因子分析。

Bartlett 球形检验:  P<0.05,不服从球形检验,应拒绝各权变量独立的假设,即变量间有较强相关;P>0.05时,服从球形检验,各变量相互独立,不能做因子分析。

接下来我们建立SEM模型。

一、画好路径图

打开AMOS,按照我们做EFA分好的题项或者根据理论分好的题项设计路径图。

二、读取数据文件

因为SPSS14.0版本以后已经将AMOS整合到SPSS内,所以一般我们数据以SPSS存储来分析比较兼容,不容易出问题。当然,在读取数据之前,我们要对数据的完整性问题做处理。

步骤:1、在工具箱中选择“Select data file(s)”图示,或者点菜单栏File-Data Files

2、勾选【Files Name】,然后选择分析的后缀名.sav数据文件读入

3、可以看到读入文件成功,数据样本145个

4、点击OK,结束数据读入,也可点击View Data阅览数据

二、命名变量名称

前面我们建立了路径图,但其中的潜在变量和观察变量以及相关误差都还没命名,和关联数据。

步骤:

[if !supportLists]1.  [endif]命名观察变量。点击工具箱中”List Variablles in data set”,按住鼠标左键把观察变量拖入方形框中。

2.命名潜在变量。双击椭圆框框,打开Object Properties,在Variables Name窗口中输入潜在变量名。

3.命名误差变量。自动命名:点击菜单Plugins-Name Unobserved Variables。手动命名,可以双击打开Object Properties,保持视窗开启,逐个命名。

4.我们可以点击,调整一下观察变量的方框,美化路径图

5.最后我们就得出一个完整模型了。

三、在路径中显示重要的参数。

步骤:1、点击Title图示,在绘图区点一下,输入参数的宏函数

2、常见的参数宏函数命令如下

四、存档,点击,保存文件

五、估算分析,输出结果

步骤:

[if !supportLists]1.  [endif]点击Analysis properties图示,选择Output,勾选需要分析的系数、输入的模型拟合度和需报告的相关值。

2、点击Calculate estimates图示,产生估计值。

六、分析验证输出结果

1.点击工具箱View Test图示,浏览输出估计值,输出报表内容。

2.报表解读

3.模型的总体

4.非标准化回归系数

5.标准化回归系数

6.相关系数

7.方差 :检查是否有违反估计

原文来自https://mp.weixin.qq.com/s/ORu4ez12YoB036tuN5KuuQ

想要学习更多知识,欢迎关注wx公z号程式科技。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/353140.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-08
下一篇2023-05-08

发表评论

登录后才能评论

评论列表(0条)

    保存