1、放大率:
与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。
所以,SEM中,透镜与放大率无关。
2、场深:
在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。
3、作用体积:
电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。
4、工作距离:
工作距离指从物镜到样品最高点的垂直距离。
如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。
5、成象:
次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。
6、表面分析:
欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。
表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。
观察方法:
如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。
尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。
扩展资料:
SEM扫描电镜图的分析方法:
从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。
图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。
将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。
扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。
参考资料:百度百科-扫描电子显微镜
岩石断口微观分析是一门研究岩石破坏断裂表面的科学。在岩石力学学科领域内,从微观方面研究岩石的破坏规律,将微观破坏形貌特征同岩石微观裂纹扩展到断裂破坏的力学机制联系起来进行的研究工作,目前已引起国内外学者越来越多的重视。
为了进一步研究岩爆的形成机制,我们对二郎山隧道岩爆岩石断口特征也做了微观电镜扫描分析研究。用于分析的试样全部取自隧道轻微岩爆(Ⅰ级)、中等岩爆(Ⅱ级)和强烈岩爆(Ⅲ级)区。
通过对六个试样岩爆岩石断口电镜扫描(SEM)分析,对照标准应力下岩石力学试验断口电镜分析图谱可知,轻微岩爆(Ⅰ级)岩石断口SEM形貌特征为沿晶断裂(即完整颗粒断裂,见图6-11(a)、(b))、穿晶断裂(即解理断裂,见图6-11(c)、(d)),属拉张脆性破坏断口;中等岩爆(Ⅱ级)岩石断口SEM形貌特征为张、剪脆性破坏并存的平行台阶状花样(图6-11(e));强烈岩爆(Ⅲ级)岩石断口SEM形貌特征为平行条纹状-台阶状花样(图6-11(f)),仍属张、剪脆性破坏性质。
综上所述,岩爆岩石断口电镜扫描分析证实了前述岩爆地质原型调研结果的正确性;同时也表明,扫描电镜分析是查明岩爆形成力学机制的一种有效的微观手段。
6.4.2 研究区岩爆岩石X射线粉晶衍射成分分析
研究区部分砂质泥岩中也发生了岩爆活动,这在国内外尚属首次发现。为了查明这类岩石发生岩爆的内在原因,开展了岩石X射线粉晶衍射成分分析研究(表6-7、图6-12至图6-14),表6-7中同时还列出了岩石点荷载强度试验结果,以便对比说明问题。
表6-7 研究区砂质泥岩X射线粉晶衍射成分分析 Tab.6-7 X-ray analysis for sand mudstone from the study area
① 成都理工学院测试中心D/MAX3 C型衍射仪测试。
图6-11 岩爆岩石断口电镜扫描图像
Fig.6-11 SEM image of the failure face of popping rocks
图6-12 WC1试样X射线粉晶衍射分析谱线
Fig.6-12 Result of X ray analysis for sample WC1
图6-13 EC1试样X射线粉晶衍射分析谱线
Fig.6-13 Result of X ray analysis for sample EC1
图6-14 EC2试样X射线粉晶衍射分析谱线
Fig.6-14 Result of X ray analysis for sample EC2
从表6-7中分析可知,砂质泥岩中的主要矿物成分为伊利石、绿泥石和石英,其中绿泥石矿物组成变化很小,基本保持稳定。但是,有岩爆与无岩爆活动的砂质泥岩内石英和伊利石的矿物组成差异十分明显,其变化规律为:无岩爆活动的EC2 样砂质泥岩内石英含量最低(<10%)、伊利石含量最高(为67%),故岩石单轴抗压强度Rb较低(仅为47.74MPa);有轻微岩爆活动的EC1 样砂质泥岩内石英、伊利石含量居中(分别为26%和49%),岩石单轴抗压强度明显高于EC2试样,可达78.76MPa;而有中等岩爆活动的WC1样砂质泥岩内石英含量最高(达39%,超过EC2样的4倍,并成为最主要组成矿物)、伊利石含量最低(仅为35%,约为EC2样的一半),岩石单轴抗压强度则增高到86.90MPa。综上所述,二郎山公路隧道高地应力区部分砂质泥岩内发生的岩爆活动与其矿物组成变化有着十分密切的关系,石英含量剧增和伊利石含量的陡降可以提高该类岩石的总体强度,改善岩石的物理力学性能,从而提高岩石储聚弹性应变能的能力,成为能产生岩爆活动的高储能体。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)