AMOS从模型到分析

AMOS从模型到分析,第1张

一般我们论文分析有很多个题项时,也就是多变量时,建立SEM结构化方程时 ,如果没有坚实的理论基础支撑,不清楚那些变量分为一个组时,题项对应哪个因子。一般可以先用EFA再在此基础上用 CFA。 (探索性因素分析用spss软件做,验证性因素分析用amos软件。) 探索性因子分析可以实现用少量因子反映大量问卷题目的信息,从而实现降低维度,便于分析的目的,并对因子命名用于后续分析。

前面的SPSS分析方法-因子分析中,也提到因子分析的前提条件 : KMO检验和巴特利特检验: 用于检查变量间的偏相关性,取值在0-1之间。KMO值越接近于1,因子分析效果就好。一般KMO值0.9以上极适合做因子分析,0.8以上适合做因子分析,0.7以上尚可,0.6以上勉强度可以,0.5以上不适合,0.5以下非常不适合。实际运用中,在0.7以上,效果比较好;在0.5以下时,不适合应用因子分析。

Bartlett 球形检验:  P<0.05,不服从球形检验,应拒绝各权变量独立的假设,即变量间有较强相关;P>0.05时,服从球形检验,各变量相互独立,不能做因子分析。

接下来我们建立SEM模型

一、画好路径图

打开AMOS,按照我们做EFA分好的题项或者根据理论分好的题项设计路径图。

二、读取数据文件

因为SPSS14.0版本以后已经将AMOS整合到SPSS内,所以一般我们数据以SPSS存储来分析比较兼容,不容易出问题。当然,在读取数据之前,我们要对数据的完整性问题做处理。

步骤:1、在工具箱中选择“Select data file(s)”图示,或者点菜单栏File-Data Files

2、勾选【Files Name】,然后选择分析的后缀名.sav数据文件读入

3、可以看到读入文件成功,数据样本145个

4、点击OK,结束数据读入,也可点击View Data阅览数据

二、命名变量名称

前面我们建立了路径图,但其中的潜在变量和观察变量以及相关误差都还没命名,和关联数据。

步骤:

[if !supportLists]1.  [endif]命名观察变量。点击工具箱中”List Variablles in data set”,按住鼠标左键把观察变量拖入方形框中。

2.命名潜在变量。双击椭圆框框,打开Object Properties,在Variables Name窗口中输入潜在变量名。

3.命名误差变量。自动命名:点击菜单Plugins-Name Unobserved Variables。手动命名,可以双击打开Object Properties,保持视窗开启,逐个命名。

4.我们可以点击,调整一下观察变量的方框,美化路径图

5.最后我们就得出一个完整模型了。

三、在路径中显示重要的参数。

步骤:1、点击Title图示,在绘图区点一下,输入参数的宏函数

2、常见的参数宏函数命令如下

四、存档,点击,保存文件

五、估算分析,输出结果

步骤:

[if !supportLists]1.  [endif]点击Analysis properties图示,选择Output,勾选需要分析的系数、输入的模型拟合度和需报告的相关值。

2、点击Calculate estimates图示,产生估计值。

六、分析验证输出结果

1.点击工具箱View Test图示,浏览输出估计值,输出报表内容。

2.报表解读

3.模型的总体

4.非标准化回归系数

5.标准化回归系数

6.相关系数

7.方差 :检查是否有违反估计

原文来自https://mp.weixin.qq.com/s/ORu4ez12YoB036tuN5KuuQ

想要学习更多知识,欢迎关注wx公z号程式科技。

验证性因子分析主要探讨潜变量之间的相关关系而不是因果关系,在SEM中,模型构建分为两块,一块是测量模型,一块是结构模型,测量模型是测量潜变量和观测指标的关系模型,而结构模型则是测量潜变量之间的关系模型;所谓验证性因子分析就是主要探讨结构模型中的相关关系,操作很简单,你把潜变量之间用双箭头联系起来就可以了,当然,这里要注意一点,如果根据理论或者经验推测某两个潜变量之间完全不存在相关的话,可以不用双箭头联系;另外,AMOS里面的analysis properties 模块设置中有个output选项,你点击critical ratios for difference 选项(打勾),运行数据后在text output的报表中可以根据临界比率(p是否小于.05)来判断潜变量之间的关系强度是否显著,如果小于临界比率,建议取消对应的潜变量双箭头。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/353677.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-09
下一篇2023-05-09

发表评论

登录后才能评论

评论列表(0条)

    保存