SEM简单介绍,以下资料来源
因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。
一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。
历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).
SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。
因果关系:
究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。
举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:
3. 这时还有可能出现更多的潜在变量:
这里我又举另外一个例子,回归模型
在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。
我们在举另外一个例子“路径分析”
路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。
在这里我们总结一下:
回归分析简单的说就是:X真的影响Y 吗?
路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。
在这里要提一下因素模型(factor model)
在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。
举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。
相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。
这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。
半分法:把现有的数据随机分成两部分,一部分用于建立模型,另外一部分用来验证模型。通过半分法把数据分成两部分比较像的数据,进行“外部验证”,但由于只有一半的数据用来建立模型,模型相对不稳定。对于样本量较小的研究不适合使用。交叉验证法:这种方法是半分法的进一步演化,常见的有半分交叉验证法和十分交叉验证法。半分交叉验证法即将原数据分为两部分,两部分数据相互依次作为建立模型和验证模型的数据,互相验证。十分交叉验证法即把数据分成10部分,用其中9部分数据做模型,另外1部分做验证,这样依次做10次模型和验证,可得到相对稳定的模型。
Bootstrap法:常规的Bootstrap内部效度分析的做法是多原数据中随机可放回地抽取一定的病例,用于建立模型,再使用原数据进行模型的验证如此做500-1000次抽取、建立模型、验证模型的工作,可以得到500-1000个模型,可以总结模型的参数分布情况,确定最终的模型参数值。
Bootstrap法是近年来发展较快的一种方法,该方法在计算机计算量提升的背景下出现,有研究证明,该方法得到模型稳定性高于前面两种方法,可以推广应用到预测模型的内部效度分析中,该方法应用会越越多。当然如果有条件,我们还是建设所有的模型做外部验证,以提高模型在应用中的可靠性。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)