网络释义 专业释义
数据服务器
资料伺服器
数据库服务器
网络服务器
2. 短语
data of server 服务器数据
Data Mining Server 服务器 数据挖掘服务器
central data warehouse server 中央数据储仓服务器
楼上回答就是你要的答案了,至于你说在服务器安装Clementine,那就相当于在服务器运行Clementine,当然建模速度会快一些......如果你希望的是在客户端用Clementine ,然后服务器端运行Clementine服务的话,你需要在服务器端安装Clemetine Server,然后启动这个服务,在客户端就可以进行服务器登录了。具体操作你可以去百度文库搜索 《Clementine 服务器》这篇文,希望对你有所帮助。
1. 电脑需要什么配置?学大数据的电脑配置主要在内存方面,至少8G,上不封顶,一般16G够用。当然这只是学习层面,自己搭虚拟机玩玩。工作中,公司自然会给你分配服务器让你工作。
2. 有哪些方向?
数据开发、数据分析、数据挖掘。其中每个大方向又拆分了几个小方向。
三者的联系是,数据过来之后先进行开发,然后进行分析,最后从数据中挖掘出价值并进行应用。
3. 用Java还是Python?
数据分析和数据挖掘基本使用Python。
数据开发不局限于语言。数据开发大多数Java,少部分Python,也有Scala,具体看公司项目技术栈。因为大部分大数据框架都支持Java接口,而且大部分公司项目技术栈都用Java,所以Java居多。Python更多地使用在脚本或者前期的框架粘合。Scala大多用在Spark框架。
具体可以去招聘网站的JD看,先看自己想去的公司,最后再看自己所在城市的公司。
4. 需要学机器学习吗?
数据挖掘需要机器学习的知识,部分数据分析岗位需要机器学习知识。
数据开发大多数是不需要的,但有些公司的数据开发岗位也要涉及到推荐系统模型等,或者要使用Spark的mlib库等等。初学者不需要特意去学,可等到后期技能拓展或者工作中需要再学。
如果你对大数据开发感兴趣,想系统学习大数据的话,可以戳我加入大数据技术学习交流群,了解课程,获取学习资源
5. 哪个方向好?
都好,兴趣为王!想做算法相关的学数据挖掘,想做开发写代码的就学数据开发,想接触业务层面的可以学数据分析,更多的可以结合自己之前的专业技能、工作经历及之后想从事的工作内容进行考虑。
6. 需要数学知识吗?
数据开发和一般岗位的数据分析师都不需要什么数学知识,除了数据挖掘和部分数据分析进行建模时需要进行统计等操作才需要数学知识。
7. 需要高学历吗?
入门级别的都不用看学历。看学历指数:数据挖掘 >数据分析 >数据开发。数据分析和开发正常本科就够了,数据挖掘大多是本科以上。
8. 薪资高吗?
大环境下,薪资:数据挖掘 >数据开发 >数据分析。同一家公司同一级别的岗位,数据开发正常高于普通开发。
具体看城市、公司以及工作年限。
9. 就业前景和市场需求怎么样?
市场需求怎么样,看培训机构的动作就知道了,今年市场上涌起一大批大数据的培训机构。而且随着企业上云,数字化转型,5G时代的到来,对数据会越来越重视。
无论哪个方向的就业前景都是明朗的,大数据的三大方向后期可以进阶纯技术架构,纯业务管理,技术与业务结合的解决方案架构师,也可以三者之间相互转型。
第一批大数据专业的学生现在大三,至少得再过2,3年,学校的课程才会相对完善,并能批量生产。不过科班的学生都知道,是不是科班只有在简历上写的不一样,上课玩的游戏都一样的。
10. 数据开发和后台开发的区别?
大数据开发相当于后台开发的升级版,要处理的数据量更多,应付的场景更复杂。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)