一、消息中间件相关知识
1、概述
消息队列已经逐渐成为企业IT系统内部通信的核心手段。它具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,成为异步RPC的主要手段之一。当今市面上有很多主流的消息中间件,如老牌的ActiveMQ、RabbitMQ,炙手可热的Kafka,阿里巴巴自主开发RocketMQ等。
2、消息中间件的组成
2.1 Broker
消息服务器,作为server提供消息核心服务
2.2 Producer
消息生产者,业务的发起方,负责生产消息传输给broker,
2.3 Consumer
消息消费者,业务的处理方,负责从broker获取消息并进行业务逻辑处理
2.4 Topic
2.5 Queue
2.6 Message
消息体,根据不同通信协议定义的固定格式进行编码的数据包,来封装业务数据,实现消息的传输
3 消息中间件模式分类
3.1 点对点
PTP点对点:使用queue作为通信载体
说明:
消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费消息。
消息被消费以后,queue中不再存储,所以消息消费者不可能消费到已经被消费的消息。 Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。
说明:
queue实现了负载均衡,将producer生产的消息发送到消息队列中,由多个消费者消费。但一个消息只能被一个消费者接受,当没有消费者可用时,这个消息会被保存直到有一个可用的消费者。
4 消息中间件的优势
4.1 系统解耦
交互系统之间没有直接的调用关系,只是通过消息传输,故系统侵入性不强,耦合度低。
4.2 提高系统响应时间
例如原来的一套逻辑,完成支付可能涉及先修改订单状态、计算会员积分、通知物流配送几个逻辑才能完成;通过MQ架构设计,就可将紧急重要(需要立刻响应)的业务放到该调用方法中,响应要求不高的使用消息队列,放到MQ队列中,供消费者处理。
4.3 为大数据处理架构提供服务
通过消息作为整合,大数据的背景下,消息队列还与实时处理架构整合,为数据处理提供性能支持。
4.4 Java消息服务——JMS
Java消息服务(Java Message Service,JMS)应用程序接口是一个Java平台中关于面向消息中间件(MOM)的API,用于在两个应用程序之间,或分布式系统中发送消息,进行异步通信。
5 消息中间件应用场景
5.1 异步通信
有些业务不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。
5.2 解耦
降低工程间的强依赖程度,针对异构系统进行适配。在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。通过消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口,当应用发生变化时,可以独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
5.3 冗余
有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的”插入-获取-删除”范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。
5.4 扩展性
因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。便于分布式扩容。
5.5 过载保护
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量无法提取预知;如果以为了能处理这类瞬间峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
5.6 可恢复性
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
5.7 顺序保证
在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。
5.8 缓冲
在任何重要的系统中,都会有需要不同的处理时间的元素。消息队列通过一个缓冲层来帮助任务最高效率的执行,该缓冲有助于控制和优化数据流经过系统的速度。以调节系统响应时间。
5.9 数据流处理
分布式系统产生的海量数据流,如:业务日志、监控数据、用户行为等,针对这些数据流进行实时或批量采集汇总,然后进行大数据分析是当前互联网的必备技术,通过消息队列完成此类数据收集是最好的选择。
6 消息中间件常用协议
6.1 AMQP协议
AMQP即Advanced Message Queuing Protocol,一个提供统一消息服务的应用层标准高级消息队列协议,是应用层协议的一个开放标准,为面向消息的中间件设计。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件不同产品,不同开发语言等条件的限制。
优点:可靠、通用
6.2 MQTT协议
MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分。该协议支持所有平台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器(比如通过Twitter让房屋联网)的通信协议。
优点:格式简洁、占用带宽小、移动端通信、PUSH、嵌入式系统
6.3 STOMP协议
STOMP(Streaming Text Orientated Message Protocol)是流文本定向消息协议,是一种为MOM(Message Oriented Middleware,面向消息的中间件)设计的简单文本协议。STOMP提供一个可互操作的连接格式,允许客户端与任意STOMP消息代理(Broker)进行交互。
优点:命令模式(非topic\queue模式)
6.4 XMPP协议
XMPP(可扩展消息处理现场协议,Extensible Messaging and Presence Protocol)是基于可扩展标记语言(XML)的协议,多用于即时消息(IM)以及在线现场探测。适用于服务器之间的准即时操作。核心是基于XML流传输,这个协议可能最终允许因特网用户向因特网上的其他任何人发送即时消息,即使其操作系统和浏览器不同。
优点:通用公开、兼容性强、可扩展、安全性高,但XML编码格式占用带宽大
6.5 其他基于TCP/IP自定义的协议
有些特殊框架(如:redis、kafka、zeroMq等)根据自身需要未严格遵循MQ规范,而是基于TCP\IP自行封装了一套协议,通过网络socket接口进行传输,实现了MQ的功能。
7 常见消息中间件MQ介绍
7.1 RocketMQ
阿里系下开源的一款分布式、队列模型的消息中间件,原名Metaq,3.0版本名称改为RocketMQ,是阿里参照kafka设计思想使用java实现的一套mq。同时将阿里系内部多款mq产品(Notify、metaq)进行整合,只维护核心功能,去除了所有其他运行时依赖,保证核心功能最简化,在此基础上配合阿里上述其他开源产品实现不同场景下mq的架构,目前主要多用于订单交易系统。
具有以下特点:
官方提供了一些不同于kafka的对比差异:
https://rocketmq.apache.org/docs/motivation/
7.2 RabbitMQ
使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP,STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。同时实现了Broker架构,核心思想是生产者不会将消息直接发送给队列,消息在发送给客户端时先在中心队列排队。对路由(Routing),负载均衡(Load balance)、数据持久化都有很好的支持。多用于进行企业级的ESB整合。
7.3 ActiveMQ
Apache下的一个子项目。使用Java完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,少量代码就可以高效地实现高级应用场景。可插拔的传输协议支持,比如:in-VM, TCP, SSL, NIO, UDP, multicast, JGroups and JXTA transports。RabbitMQ、ZeroMQ、ActiveMQ均支持常用的多种语言客户端 C++、Java、.Net,、Python、 Php、 Ruby等。
7.4 Redis
使用C语言开发的一个Key-Value的NoSQL数据库,开发维护很活跃,虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。
7.5 Kafka
Apache下的一个子项目,使用scala实现的一个高性能分布式Publish/Subscribe消息队列系统,具有以下特性:
7.6 ZeroMQ
号称最快的消息队列系统,专门为高吞吐量/低延迟的场景开发,在金融界的应用中经常使用,偏重于实时数据通信场景。ZMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,开发成本高。因此ZeroMQ具有一个独特的非中间件的模式,更像一个socket library,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序本身就是使用ZeroMQ API完成逻辑服务的角色。但是ZeroMQ仅提供非持久性的队列,如果down机,数据将会丢失。如:Twitter的Storm中使用ZeroMQ作为数据流的传输。
ZeroMQ套接字是与传输层无关的:ZeroMQ套接字对所有传输层协议定义了统一的API接口。默认支持 进程内(inproc) ,进程间(IPC) ,多播,TCP协议,在不同的协议之间切换只要简单的改变连接字符串的前缀。可以在任何时候以最小的代价从进程间的本地通信切换到分布式下的TCP通信。ZeroMQ在背后处理连接建立,断开和重连逻辑。
特性:
二、主要消息中间件的比较
阅读字数: 2513 | 5分钟阅读
获取嘉宾演讲视频及PPT ,请点击: http://t.cn/RDVY4JN
阿里巴巴中间技术专家不铭从功能特性、技术架构、最佳实践、案例分析四个方面进行了《Aliware-MQ消息队列》的分享。
Aliware-MQ是阿里云提供的企业级互联网架构的核心产品,基于高可用分布式集群技术,支持海量高并发和万亿级消息流转,支持海量的消息堆积,支持高可靠/高可用方案,提供了运维、监控等一系列完整的配套服务。
如上图所示,从消息的维度来看分为普通消息、顺序消息、定时消息和事务消息等四种消息,无论是发送哪种消息客户端都支持熔断机制,即如果发现发送目标节点有性能问题,客户端会自动进行熔断,把有问题的节点排出去,保证消息发往可靠性最高的机器。管理方面已经支持消息的查询、消息回溯、消息全链路轨迹和监控报警机制。性能上MQ已经达到了百亿级的堆积能力,毫秒级的投递延迟,支持万级节点高并发,集群水平热扩缩。消息消费方面,支持失败后的消息重投机制,失败的消息会重新投递到队列中去,现在最多支持16次重投。
上图是Aliware-MQ的功能架构。左边是控制台的管理,可以在上面做发布订阅管理。右边目前的接入方式是SDK支持TCP协议,同时也支持HTTP接口,以及面向手机终端的MQTT协议。
OpenAPI是MQ提供给用户的管控方式,用于实现一系列资源管理和运维功能,用户可以通过Open API查询所需要的任何东西。
上图中是我们今年推出的一个MQ移动物联网套件。之前的客户端,不管是上游还是下游收发都是用各自的服务器。但是今年我们有了移动物联网套件,可以直接面向终端设备。比如手机、汽车等移动设备利用移动物联网套件,通过一个网关就可以直接和消息系统打通。
Aliware-MQ的消息系统是基于队列。队列要保证数据安全,是支持高并发和高性能读写的最基本元素。
如上图所示,Producer是消息发送集群,下游的Consumer是消费者集群,都依赖于MQ的SDK。Broker是消息服务器,所有的消息都发送到Broker上面;Name Server和ZK功能类似,用来做服务发现。Producer要从Name Server获取到Topic在哪个节点上,订阅Topic时需要知道Topic从哪里取,同样需要Name Server。Broker上的Topic信息会定时在Name Server上注册,Producer和Consumer在交互之前会从Name Server上获取目标。
图中的master是主机,slave是备机,主备之间会做数据同步,有异步和同步两种方式。一个master可以布多个节点,这个根据自己的成本来决定。如果扩容的话,只要直接布一台master即可,它会定时地将Topic注册到Name Server上,发送方和订阅方也会定时地感知这个过程,整个扩容的过程对于用户来说大概30秒就能完成。
Aliware-MQ所有数据存储在Commit Log里,它在实现上就相当于一个文件夹,每次会生成一个1G的文件。不管哪个Topic写过来的消息都会直接写入这个文件中,这个文件写满后再直接写下一个。
针对每一个Topic,要在业务层面对它进行区分,所以我们做了一层索引。例如在上图中有5个队列,每个队列都会生成定长的索引文件,通过索引,可以找到这条消息当前处于哪个CommitLog文件的某个具体位置中。
这样存储结构,保证了无论多少个topic,CommitLog的写是顺序的,能较大的保证MQ的写入性能。
Aliware-MQ的负载均衡是按照队列维度来做的,消费的时候会把topic的队列平均分配给消费实例。比如有2个消费实例,topic队列是4个,那么每个消费实例就消费2个;而如果共有5个队列,那么就是是1个消费2个,另1个消费3个。一个队列同一时间只会被一个消费实例消费,所以当出现队列数量小于消费实例数量的情况时,就会有消费实例出现空闲,这个时候可以根据业务实际情况手动通过工具将队列数量调大。
消息写进来都是先放在Java堆里,然后再落盘。如果用户要消费的消息都在内存里,那么就可以很快的读取到。但是如果用户消息堆积比较久,消息已经不在内存里而是存储在了磁盘中,这个时候就需要去磁盘里取数据,然后加载到内存里面读取出来。
Aliware-MQ的刷盘策略有异步和同步两种。异步到内存就返回成功,同步写则一定是消息刷到磁盘中才会返回成功。这种刷盘方式可以根据业务的具体需求进行配置,从写入的性能来看,异步写的性能肯定是会比同步的好。
从发消息的角度来看,如果发送失败,会有补偿机制。MQ的客户端会做三次重发,一台机器发送失败之后会默认往另外两台机器再尝试,如果三次都失败了才会把最终的失败结果传回,这个时候用户需要自己对发送异常进行相关处理。
有幂等要求的业务,Consumer在使用的时候需要自己做去重操作,在一些场景下,如客户端本地等待超时等,是无法保证消息完全不重复的,因此用户在进行系统设计时需要考虑到这一点。
Aliware-MQ目前支持的消息最大是4M,消息越小,性能越高。定时消息是支持消息的定时投递,可以自行设置要投递的时间,最长是40天。事务消息通过两阶段的提交的方式,来解决分布式事务问题。顺序消息可以采用全局顺序、分区顺序,严格保证消息的顺序。
Aliware-MQ的使用场景主要有系统间异步解耦、分布式事务、异构数据复制与分发、双十一大促的削峰填谷、大规模机器的Cache同步、日志服务和IM实时通信以及实时计算分析。
MQ顺序消息分为全局有序和队列有序。全局有序是从指所有消息发出开始,下游的接收方都是按照顺序接收;队列有序则是将消息进行区块分区,同一个分区内的消息按照先入先出的顺序进行顺序消费,保证一个队列只会被一个进程消费。
当一个交易系统下单之后,会发一条消息到MQ,购物车接收消息把购物车里的状态清空。如果这时交易消息发送失败,购物车就无法清空,对于数据来说这就是一个脏数据。面对这种情况我们有事务消息可以解决这个问题,在交易开始时先发送一条半事务消息,然后交易系统开始下单,所有事情做完之后再提交半事务,这时只有主动提交成功,消息队列才会将这条消息实际发送给用户。如果交易下单过程失败,则可以主动回滚这条消息,购物车和交易系统之间可以做到没有脏数据。
双十一大促时,各个分会场会有玲琅满目的商品,每件商品的价格都会实时变化。使用缓存技术也无法满足对商品价格的访问需求,缓存服务器网卡跑满。访问较多次商品价格查询影响会场页面的打开速度。于是MQ提供了一种广播机制,本来一条消息只会被集群的一台机器消费。如果使用广播模式,那么这条消息会被集群下的所有节点消费一次,相当于把价格信息同步到需要的每台机器上,可以取代缓存的作用。
实时计算功能主要是做一个消息总线,业务系统自动采集数据,把消息分发达下游的实时计算系统里,根据实时计算结果来给业务方做服务。
我今天的分享就到这里,谢谢大家!
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)