超高压电镜 即高压可达2000千伏以上,电子束可穿透约10μm厚的样品的电镜。这种电镜的基本构造和成像原理与透射电镜相似,但需要特制的真空系统和高压电气系统,还要附加特殊的操作控制系统和辐射防护装置等,使其结构较透射电镜更复杂。
超高压电镜 (HVEM) 是一种TEM,不过常用的 TEM加速电压为 100kV。只能穿透几千埃厚的样品。电子的穿透能力随β2=v2/с2(电子速度与光速之比)而增。由于相对论性效应,β2在 500kV以上增加得就很慢了。目前有200kV、300kV和1000kV的商品电镜。法国和日本有3000kV的特制电镜。HVEM除加速筒以外与一般 TEM相似,只是尺寸放大了。1000kV的电镜有两层楼高。放大尺寸后,样品周围空间增大,便于安置各种处理样品的附件,如拉伸、加热、冷却、化学反应等副件,并能把它们与倾斜样品台结合起来;还可以做动态观察,用电视记录样品处理过程中的变化。高能量的电子能造成样品中的辐射损伤,这对研究材料辐射损伤的微观机理带来极大的方便。
高分辨电镜(HREM) 提高加速电压,使电子波长更短,能提高分辨本领。由于技术上的难度高,所以至70年代初超高压电镜主要针对提高穿透率。70年代末至80年代初技术上的提高带来了200kV、300kV的高分辨商品电镜及个别500kV、600kV和1000kV的HREM。分辨本领能达2┱左右。不久将能达到1.5┱。由于生物学分子极易被辐照损伤,所以目前HREM主要用于观察无机材料中的原子排列。
扫描电镜 (SEM) 主要用于直接观察固体表面的形貌,其原理如图2所示。先利用电子透镜将一个电子束斑缩小到几十埃,用偏转系统使电子束在样品面上作光栅扫描。电子束在它所到之处激发出次级电子,经探测器收集后成为信号,调制一个同步扫描的显像管的亮度,显示出图像。样品表面上的凹凸不平使某些局部朝向次级电子探测器,另一些背向探测器。朝向探测器的部分发出的次级电子被集收得多,就显得亮,反之就显得暗,由此产生阴阳面、富有立体感的图像。像的放大倍数为显像管的扫描幅度比上样品面上电子束的扫描幅度。SEM的分辨本领比电子束斑直径略大。目前SEM的分辨本领能达60┱。
扫描透射电镜(STEM) 成像方式与扫描电镜相似,不过接收的不是次级电子而是透射电子(包括部分小角散射电子)。样品也必须是薄膜,STEM的分辨本领与电子束斑直径相当。专门的STEM用高亮度场致发射电子枪(要求10-10托的超高真空)。分辨本领能达3┱。利用这种STEM已观察到轻元素支持膜上的单个重原子。对实际工作尤为重要的是可以利用它的微小电子束斑作极微区(几十埃)的晶体结构分析(用电子衍射)和成分分析(用电子束激发的标识X 射线或者用电子能量损失谱)。目前商品TEM可以带有STEM附件,不过因为没有高亮度场致发射枪,所以只能将束斑缩到几十埃。能做约100┱范围内的结构和成分分析。能在观察显微像的同时在其任意一个微小的局部做上述分析的电镜叫“分析电镜”。
您好,感谢您提出的问题。扫描电子显微镜的光斑是一种由电子束扫描的照片,它可以捕捉到细胞、细菌、病毒等微小物体的形状和结构。它可以放大到比普通显微镜更大的比例,更清晰地显示出物体的细节。扫描电子显微镜的光斑可以拍摄出物体的三维图像,可以更清晰地显示出物体的细节,以及物体内部的结构。它可以帮助科学家们更深入地了解物体的结构,从而更好地研究物体的特性和性质。相同:都是电子枪即发射电子的装置,都有阴极和阳极,阴极都是点源发射,阴极和阳极之间有直流高压电场存在,高压一般可调,用于控制电子的发射速度(能量),电子枪发射的电流强度很小,微安级别和纳安级别,为防止气体电离造成的大电流击穿高压电源,都需要高真空环境.电子枪阴极都属于耗材系列.差异和优劣:
1、点源直径不同及优劣:
钨灯丝电子枪阴极使用0.1mm直径的钨丝制成V形(发叉式钨丝阴极),使用V形的尖端作为点发射源,曲率半径大约为0.1mm;场发射电子枪阴极使用0.1mm直径的钨丝,经过腐蚀制成针状的尖阴极,一般曲率半径在100nm~1μm之间.由于制作工艺上的差异,造价不同,发叉式钨丝阴极便宜,场发射阴极很贵.
2、发射机制不同和优劣
钨灯丝属于热发射,在灯丝电极加直流电压,钨丝发热,使用温度一般在2600K~2800K之间,钨丝有很高的电子发射效率,温度越高电流密度越大,理想情况下的的电子枪亮度越高.由于材料的蒸发速度随温度升高而急剧上升,因此钨灯丝的寿命比较短,一般在50~200小时之间,这个和设定的灯丝温度有关.由于电子发射温度高,发射的电子能量分散度大,一般2ev,电子枪引起的色差会比较大.
场发射电子枪主要的发射机制不是靠加热阴极,而是在尖阴极表面增加强电场,从而降低阴极材料的表面势垒,并且可以使得表面势垒宽度变窄到纳米尺度,从而出现量子隧道效应,在常温甚至在低温下,大量低能电子通过隧道发射到真空中,由于阴极材料温度低,一般材料不会损失,因此寿命很长,可使用上万小时.
3、电子枪控制方式和电子源直径不同和优劣性.
钨灯丝是三极自给偏压控制,具有偏压负反馈电路,因此发射电流稳定度高;由于阴极发射点源面积大,因此电子源尺寸也比较大,50~100μm,发射可达几十~150μA,但电子枪的亮度低,因此当电子束斑聚焦到几个纳米的时候,总的探针电流很小,信噪比太低是限制图像分辨率的根本因素,当前最佳钨灯丝扫描电镜最佳分辨率3.0nm.
场发射电子枪没有偏压负反馈电路,外界电源的稳定度是决定因素,发射电流稳定度相比要低一些;由于尖阴极发射电源面积很小100nm左右,没有明显的电子源,因此使用虚电子源作为电子光学系统设计的初始物而存在,电子虚源直径一般在2~20nm,电子枪亮度相比钨灯丝提高上千倍.当束斑尺寸缩小到1nm以下时依然具有足够强的探针电流来获得足够的成像信号,因此分辨率高,当前最佳的场发射扫描电镜分辨率实现了亚纳米级别.
4、系统真空度不同及优劣
钨灯丝扫描电镜使用一般的高真空,两级真空泵系统获得0.001pa的真空度即可满足,因此造价低.
场发射扫描电镜使用超高真空,需要三级真空泵必须获得0.0000001Pa以上的真空度才可以稳定工作.原因在于电子枪尖阴极不耐较低的真空中被电离的离子轰击,否则枪尖很容易被扫平而失效,这时候的性能还不如钨灯丝,其次电子枪阴极尖端在较低的真空下,吸附的气体分子会急剧加大阴极材料的表面势垒,造成电子枪发射不稳,亮度降低,所以必须使用超高真空一般是10的-8次方.超高真空系统的造价明显比钨灯丝高很多.超高真空的洁净度要好于钨灯丝的一般高真空,因此很长时间,也就是在灯丝寿命内,系统可以免清洗和维护.钨灯丝扫描电镜相对维护周期要短一些.
5、钨灯丝和场发射是具有明显档次差异的,这也从价格上明确反映.钨灯丝扫描电镜十几万,场发射几十万,都是美元.国内目前只能制造最低档次的钨灯丝扫描电镜.
以上定性表达,具体数据还望查阅有关资料
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)