差异和优劣:
1、点源直径不同及优劣:
钨灯丝电子枪阴极使用0.1mm直径的钨丝制成V形(发叉式钨丝阴极),使用V形的尖端作为点发射源,曲率半径大约为0.1mm;场发射电子枪阴极使用0.1mm直径的钨丝,经过腐蚀制成针状的尖阴极,一般曲率半径在100nm~1μm之间.由于制作工艺上的差异,造价不同,发叉式钨丝阴极便宜,场发射阴极很贵.
2、发射机制不同和优劣
钨灯丝属于热发射,在灯丝电极加直流电压,钨丝发热,使用温度一般在2600K~2800K之间,钨丝有很高的电子发射效率,温度越高电流密度越大,理想情况下的的电子枪亮度越高.由于材料的蒸发速度随温度升高而急剧上升,因此钨灯丝的寿命比较短,一般在50~200小时之间,这个和设定的灯丝温度有关.由于电子发射温度高,发射的电子能量分散度大,一般2ev,电子枪引起的色差会比较大.
场发射电子枪主要的发射机制不是靠加热阴极,而是在尖阴极表面增加强电场,从而降低阴极材料的表面势垒,并且可以使得表面势垒宽度变窄到纳米尺度,从而出现量子隧道效应,在常温甚至在低温下,大量低能电子通过隧道发射到真空中,由于阴极材料温度低,一般材料不会损失,因此寿命很长,可使用上万小时.
3、电子枪控制方式和电子源直径不同和优劣性.
钨灯丝是三极自给偏压控制,具有偏压负反馈电路,因此发射电流稳定度高;由于阴极发射点源面积大,因此电子源尺寸也比较大,50~100μm,发射可达几十~150μA,但电子枪的亮度低,因此当电子束斑聚焦到几个纳米的时候,总的探针电流很小,信噪比太低是限制图像分辨率的根本因素,当前最佳钨灯丝扫描电镜最佳分辨率3.0nm.
场发射电子枪没有偏压负反馈电路,外界电源的稳定度是决定因素,发射电流稳定度相比要低一些;由于尖阴极发射电源面积很小100nm左右,没有明显的电子源,因此使用虚电子源作为电子光学系统设计的初始物而存在,电子虚源直径一般在2~20nm,电子枪亮度相比钨灯丝提高上千倍.当束斑尺寸缩小到1nm以下时依然具有足够强的探针电流来获得足够的成像信号,因此分辨率高,当前最佳的场发射扫描电镜分辨率实现了亚纳米级别.
4、系统真空度不同及优劣
钨灯丝扫描电镜使用一般的高真空,两级真空泵系统获得0.001pa的真空度即可满足,因此造价低.
场发射扫描电镜使用超高真空,需要三级真空泵必须获得0.0000001Pa以上的真空度才可以稳定工作.原因在于电子枪尖阴极不耐较低的真空中被电离的离子轰击,否则枪尖很容易被扫平而失效,这时候的性能还不如钨灯丝,其次电子枪阴极尖端在较低的真空下,吸附的气体分子会急剧加大阴极材料的表面势垒,造成电子枪发射不稳,亮度降低,所以必须使用超高真空一般是10的-8次方.超高真空系统的造价明显比钨灯丝高很多.超高真空的洁净度要好于钨灯丝的一般高真空,因此很长时间,也就是在灯丝寿命内,系统可以免清洗和维护.钨灯丝扫描电镜相对维护周期要短一些.
5、钨灯丝和场发射是具有明显档次差异的,这也从价格上明确反映.钨灯丝扫描电镜十几万,场发射几十万,都是美元.国内目前只能制造最低档次的钨灯丝扫描电镜.
以上定性表达,具体数据还望查阅有关资料
白炽灯泡之所以用钨做灯丝,这是利用钨的物理属性:
1、钨丝的熔点高,达到了白热化的所需温度。灯丝发光时的温度高达2000多摄氏度,在这样的温度下,一般的金属都已经融化了,只有钨的熔点高达3400多摄氏度。
2、价格便宜。有利于钨丝灯泡的广泛推广。
3、钨丝的电阻较大,导电性差。在相等通电时间的情况下,钨相较其他金属产生的热量较多。
4、化学性质稳定。抗氧化能力强,并且不宜与空气中的其他物质发生变化,增强了钨丝灯泡的寿命。
综合以上的优点,钨是做白炽灯灯丝的最佳选择。
钨是熔点最高的难熔金属。一般熔点高于1650℃并有一定储 量的金属以及熔点高于锆熔点(1852℃)的金属称为难熔金属。典型的难熔金属有钨、钽、钼、铌、铪、铬、钒、锆和钛。作为一种难熔金属,钨最重要的优点是有良好的高温强度,对熔融碱金属和蒸气有良好的耐蚀性能,钨只有在1000℃以上才出现氧化物挥发和液相氧化物。但是,它同时也具有塑性-脆性转变温度较高,在室温下难以塑性加工的缺点。以钨为代表的难熔金属在冶金、化工、电子、光源、机械工业等部门得到了广泛应用。
钨,一种金属元素。原子序数74,原子量183.84。钢灰色或银白色,硬度高,熔点高,常温下不受空气侵蚀;主要用途为制造灯丝和高速切削合金钢、超硬模具,也用于光学仪器,化学仪器。中国是世界上最大的钨储藏国。
钨用于灯泡的主要原因是因为它具有高熔点、高电阻率的特性,并且比任何其他金属都更耐用。这些特性使其更加适用与灯泡,因为灯丝需要能够承受足够的热量才能发光,但又不能在此过程中断裂。
钨高熔点在白炽灯泡中使用钨的一个很好的原因是它具有非常高的熔点。钨的熔点约为 3400 °C,远高于灯泡实际达到的实际温度。这也使钨成为熔点最高的金属。
白炽灯泡通常在达到 260 °C 左右的温度时达到峰值。然而,该温度取自发光灯丝周围的玻璃灯泡,灯丝本身达到约 2500 °C 的温度。
这是使用钨的主要原因,因为为了使用加热原理制造灯泡,我们显然需要能够承受这么高温度的东西。然而,它只能承受一次使用是不够的,它需要能够持续更长时间才行,这是许多其他金属根本无法做到的。
钨高电阻率钨成为优质灯泡灯丝的另一个原因是它具有相当高的电阻率。电阻率或多或少意味着它对电流的抵抗力。如果材料具有低电阻率,则意味着电子更容易通过它,而如果材料具有高电阻率,则电子更难通过。
在大多数设计中,材料具有低电阻率是有益的,因为这样我们可以在使用相同体积的材料的情况下让更大的电流通过它们。正是由于这个原因,铜是最常用于电线的材料。因为,它具有相当低的电阻率,并且与其他良导体(例如金或银)相比价格便宜。
然而,在诸如灯泡这些应用中,高电阻率更有利。在大多数情况下,这是因为需要在电路中达到一定的电阻才能使所需的电流通过该电路。
为了更好地理解这一点,我们首先需要研究当大量电子通过材料时会发生什么。当电子从材料中的 A 点移动到 B 点时,会产生轻微的热量。你可以用物理学中运动如何产生热量的同样方式来思考它。
通过的电子越多,这种效应就会被放大。这既是因为它会在材料内产生更多运动,还因为电子本身最终将开始争夺物理空间。你可以想象这就像 100 个人必须通过一扇门一样。由于存在太多电子,他们将开始争夺空间。
这也是导体面积变得重要的原因,因为面积越大,需要对抗的电子就越少。这相当于在 100 人的比喻中添加更宽或更多的门。话虽如此,给予电子的电阻越大,它们穿过材料所需的工作就越多。较高的电阻也会导致发热增加。
一旦我们理解了这一点,我们就可以开始理解钨丝是如何在灯泡中发光的。
作为灯丝的实际线非常细,它充当电子必须通过的非常狭窄的路径。这会在灯丝内产生很大的阻力,然后导致热量积聚并最终发光。如前所述,为了产生这种辉光,我们需要达到非常高的温度。这就是钨非常适合此目的的原因,因为它能够在发光所需的温度下不熔化。
钨低蒸发当创造在如此高的温度下运行的东西时,我们开始遇到东西蒸发的问题。虽然钨对高温有很高的耐受性,但它会在微观层面上对灯丝造成损坏。
如果变化发生在这么小的范围内,那么就可以接受。造成损坏的方式是因为电子通过,钨将开始振动。这些振动会导致单个原子从灯丝的其余部分分裂并最终落在灯泡的玻璃上。
这不仅会使灯丝因质量损失而变弱,而且还会开始对灯泡的光输出产生影响,因为在整个玻璃灯泡内部会有一小层钨。他们解决这个问题的方法是开始将惰性气体放入灯泡中。在此之前,他们曾经将灯泡内部制成真空,以防止巨大的热量和氧气之间发生任何形式的燃烧。
他们这样做是因为如果没有氧气存在,灯泡中就不会发生燃烧,因此他们决定使用真空来防止这种情况发生。但是,也可以将气体放入灯泡中,但重要的是要注意为此选择哪种气体。大多数气体也会像氧气一样燃烧,这就是为什么必须使用惰性气体来代替。
由于这些类型的气体的性质,惰性气体不会与热量发生化学反应,这就是为什么决定在灯泡内部使用这种气体的原因。这些灯泡中最常用的气体是氩气。
用玻璃填充灯泡的效果相当简单,但非常有效。它的作用是为分离的钨原子提供一些可以反弹的东西,而不是直接射入玻璃灯泡。
如果我们给钨一些可以反弹的东西,它很可能会再次反弹回灯丝。这将导致原子再次与灯丝结合并像以前一样继续工作。
总结
经过许多的测试,人们最终发现钨比任何其他金属更有效,相比之下,其他金属不是很理想。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)