转载 这种功能实际上就是数据同步,同时要考虑手机本身、电量、网络流量等等限制因素,所以通常在移动端上有一下两个解决方案:
1.一种是定时去server查询数据,通常是使用HTTP协议来访问web服务器,称Polling(轮询);
2.还有一种是移动端和服务器建立长连接,使用XMPP长连接,称Push(推送)。
从耗费的电量、流量和数据延迟性各方面来说,Push有明显的优势。但是使用Push的缺点是:
对于客户端:实现和维护相对成本高,在移动无线网络下维护长连接,相对有一些技术上的开发难度。
对于服务器:如何实现多核并发,cpu作业调度,数量庞大的长连接并发维护等技术,仍存在开发难点。
在讲述Push方案的原理前,我们先了解一下移动无线网络的特点。
移动无线网络的特点:
因为 IP v4 的 IP 量有限,运营商分配给手机终端的 IP 是运营商内网的 IP,手机要连接 Internet,就需要通过运营商的网关做一个网络地址转换(Network Address Translation,NAT)。简单的说运营商的网关需要维护一个外网 IP、端口到内网 IP、端口的对应关系,以确保内网的手机可以跟 Internet 的服务器通讯
GGSN(Gateway GPRS
Support Node 网关GPRS支持结点)模块就实现了NAT功能。
因为大部分移动无线网络运营商都是为了减少网关的NAT映射表的负荷,所以如果发现链路中有一段时间没有数据通讯时,会删除其对应表,造成链路中断。(关于NAT的作用及其原理可以查看我的另一篇博文:关于使用UDP(TCP)跨局域网,NAT穿透的心得)
Push在Android平台上长连接的实现:
既然我们知道我们移动端要和Internet进行通信,必须通过运营商的网关,所以,为了不让NAT映射表失效,我们需要定时向Internet发送数据,因为只是为了不然NAT映射表失效,所以只需发送长度为0的数据即可。
这时候就要用到定时器,在android系统上,定时器通常有一下两种:
1.java.util.Timer
2.android.app.AlarmManager
分析:
Timer:可以按照计划或者时间周期来执行相关的任务。但是Timer需要用WakeLock来让CPU保持唤醒状态,才能保证任务的执行,这样子会消耗大量流量;当CPU处于休眠的时候,就不能唤醒执行任务,所以应用于移动端明显是不合适。
AlarmManager:AlarmManager类是属于android系统封装好来管理RTC模块的管理类。这里就涉及到RTC模块,要更好地了解两者的区别,就要明白两者真正的区别。
RTC(Real- Time Clock)实时闹钟在一个嵌入式系统中,通常采用RTC
来提供可靠的系统时间,包括时分秒和年月日等而且要求在系统处于关机状态下它也能够正常工作(通常采用后备电池供电),它的外围也不需要太多的辅助电路,典型的就是只需要一个高精度的32.768KHz
晶体和电阻电容等。(如果对这方面感兴趣,可以自己查阅相关资料,这里就说个大概)
好了,回来正题。所以,AlarmManager又称全局定时闹钟。这意味着,当我用使用AlarmManager来定时执行任务,CPU可以正常地休眠,只有在执行任务是,才唤醒CPU,这个过程是很短时间的。
下面简单来说明其使用:
1.类似于Timer功能:
//获得闹钟管理器
AlarmManager
am = (AlarmManager)getSystemService(ALARM_SERVICE)
//设置任务执行计划
am.setRepeating(AlarmManager.ELAPSED_REALTIME, firstTime, 5*1000,
sender)//从firstTime才开始执行,每隔5秒再执行
2.实现全局定时功能:
//获得闹钟管理器
AlarmManager
am = (AlarmManager)getSystemService(ALARM_SERVICE)
//设置任务执行计划
am.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP, firstTime,
5*1000, sender)//从firstTime才开始执行,每隔5秒再执行
总结:在android客户端使用Push推送时,应该使用AlarmManager来实现心跳功能,使其真正实现长连接。
在了解连接池之前,我们需要对长、短链接建立初步认识。我们都知道,网络通信大部分都是基于 TCP/IP 协议,数据传输之前,双方通过“ 三次握手 ”建立连接,当数据传输完成之后,又通过“ 四次挥手 ”释放连接,以下是“三次握手”与“四次挥手”示意图:
三次握手建立连接示意图:
四次挥手释放连接示意图:
长、短连接是相对通信时间而言的。长连接相对短连接而言,多了一个 保持连接 的过程,可以在一个连接上可以连续发送多个数据包,在连接保持期间,如果没有数据包发送,需要双方发链路检测包。
短连接的操作步骤是:
建立连接——数据传输——关闭连接…建立连接——数据传输——关闭连接
client向server发起连接请求,server接到请求,然后双方建立连接。client向server发送消息,server回应client,然后一次请求就完成了。这时候双方任意都可以发起close操作,不过一般都是client先发起close操作。上述可知,短连接一般只会在 client/server间传递一次请求操作。
短连接的优点是:管理起来比较简单,存在的连接都是有用的连接,不需要额外的控制手段。
长连接的操作步骤是:
建立连接——数据传输…(保持连接)…数据传输——关闭连接
client向server发起连接,server接受client连接,双方建立连接,client与server完成一次请求后,它们之间的连接并不会主动关闭,后续的读写操作会继续使用这个连接。
TCP长连接保持的两种办法:
自定义心跳消息头.,一般客户端主动发送到服务端,服务器接收后进行回应(也可以不回应),以便能够侦测连接是否异常断开。
通过设置TCP keepalive的属性,并设置发送底层心跳包的时间间隔。TCP keepalive是在底层定时发送心跳报文,服务器端接收到底层的心跳报文直接丢弃,不关心其内容。
HTTP协议是无状态的,在HTTP/1.0中默认使用短连接,客户端和服务器每进行一次HTTP操作,浏览器就会重新建立一个HTTP会话。
而从HTTP/1.1起,默认使用长连接,用以保持连接特性,使用长连接的HTTP协议,会在响应头加入这行代码:
在使用长连接的情况下,当一个网页打开完成后,客户端和服务器之间用于传输HTTP数据的TCP连接不会关闭,客户端再次访问这个服务器时,会继续使用这一条已经建立的连接。Keep-Alive不会永久保持连接,它有一个保持时间,可以在不同的服务器软件中设定这个时间。实现长连接需要客户端和服务端都支持长连接。
HTTP协议的长连接和短连接,实质上是TCP协议的长连接和短连接。
基于TCP/IP协议,我们可以知道,频繁的连接创建和销毁都需要消耗资源,而连接池是将已经创建好的连接保存在池中,当有请求来时,直接使用已经创建好的连接进行访问,这样省略了创建连接和销毁连接的过程。这样性能上得到了提高。
以数据库连接池为例,基本原理如下:
连接池技术带来的好处:
由于连接得到重用,避免了频繁创建、释放连接引起的大量性能开销。在减少系统消耗的基础上,另一方面也增进了系统运行环境的平稳性(减少内存碎片以及临时进程/线程的数量)。
连接池在初始化过程中,往往已经创建了若干连接置于池中备用。此时连接的初始化工作均已完成。对于业务请求处理而言,直接利用现有可用连接,避免了连接初始化和释放过程的时间开销,从而缩减了系统整体响应时间。
在较为完备的连接池实现中,可根据预先的连接占用超时设定,强制收回被占用连接。从而避免了常规连接操作中可能出现的资源泄漏。
以PHP开发为例,基于PHP-FPM机制实现的Web服务,并不容易实现连接池,而常驻内存的开发框架,例如workerman、swoole 则可以简单实现连接池功能。PHP-FPM机制下的连接池需要借助第三方Proxy实现,例如:
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)