X射线的产生原理及其本质是什么?具有哪些特征

X射线的产生原理及其本质是什么?具有哪些特征,第1张

x射线

波长

介于

紫外线

γ射线

间的

电磁辐射

。x射线是一种波长很短的电磁辐射,其波长约为(20~0.06)×10-8厘米之间。由德国物理学家w.k.伦琴于1895年发现,故又称伦琴射线。伦琴射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应。

x射线的特征是波长非常短,频率很高。

(B)母核的电荷数大于子核的电荷数.

(C)子核的动量等于中微子的动量.

(D)子核的动能大于中微子的动能.

解析:本题以“轨道电子俘获”为背景进行命题,该过程的核反应方程式为

,因此根据核反应中质量数和电荷数守恒可知母核的质量数等于子核的质量数,母核的电荷数大于子核的电荷数.在俘获过程中系统动量守恒,子核必然反冲,其动量大小等于中微子动量大小�

原子核可以通过某种方式(譬如β衰变)达到激发态,处于激发态的原子核可以通过发射γ射线跃迁到低激发态或基态,这种现象称为γ衰变或称γ跃迁.核能级跃迁所发出的光子与原子能级跃迁所发出的光子没本质的差别,不同的是原子能级跃迁发射的光子能量只有eV~keV数量级,而核能级跃迁发射的光子能量却有MeV数量级.在不考虑核的反冲时,光子能量Eg可以表示为下面的形式Eg=Es-Ex.有时原子核从激发态到较低能态的跃迁并不放出光子,而是把能量直接交给核外电子,使电子脱离原子,这种现象称为内转换(IC),脱离原子的电子称为内转换电子.处于激发态的原子核可以通过放射γ光子回到基态,也可以通过产生内转换电子回到基态,究竟发生的是哪种过程,完全决定于核的能级特性.内转换电子的动能与壳层电子的电离能之和应是原子核的两能级间的能量差.也就是等于在两原子核能级间跃迁所辐射出的γ光子的能量.对于内转换的研究是获得有关核能级知识的重要手段.当然通过内转换方式还可以产生原子的特征X射线.

例6.(2004年江苏卷)若原子的某内层电子被电离形成空位,其他层的电子跃迁到该空位上时,会将多余的能量以电磁辐射的形式释放出来,此电磁辐射就是原子特征X射线.内层空位的产生有多种机制,其中的一种称为内转换,即原子中处于激发态的核跃迁回基态时,将跃迁时释放的能量交给某一内层电子,使此内层电子电离而形成空位(被电离的电子称为内转换电子).214Po的原子核从某一激发态回到基态时,可将E0=1.416MeV的能量交给内层电子(如K、L、M层电子,K、L、M标志原子中最靠近核的三个电子层)使其电离,实验测得从214Po原子的K、L、M层电离出的电子的动能分别为EK=1.323MeV,EL=1.399MeV,EM=1.412MeV.则可能发射的特征X射线的能量为:

解析:该题所述的通过“内转换”的方式辐射出原子特征X射线是一全新的物理情景,需考生在弄懂题意的基础上,正确地建立物理模型,将所学的能量守恒定律和玻尔原子结构理论迁移过来.由题设可知,214Po的原子核从某一激发态回到基态时,将E0=1.416MeV的能量交给某一内层电子使其电离,实验测得从214Po原子的K、L、M层电离出的电子的动能分别为EK=1.323MeV,EL=1.399MeV,EM=1.412MeV,则由能量守恒定律得214Po原子的K、L、M层电子所具有的能量分别为EK′=-0.093MeV,EL′=-0.017MeV,EM′=-0.004MeV,当K层电子被电离产生空位时,L、M层的电子都有可能跃迁到该空位上,而多余的能量以电磁辐射的形式释放出来,可能发射的原子特征X射线的能量为0.013MeV和0.076MeV当L层的电子被电离产生的空位时,M层的电子有可能跃迁到该空位上,而多余的能量以电磁辐射的形式释放出来,可能发射的原子特征X射线的能量为0.013MeV.故(A)、(C)选项都正确.

定义:由高速电子撞击物质的原子所产生的电磁波。 波长介于紫外线和γ射线 间的电磁辐射。由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。波长小于0.1埃的称超硬X射线,在0.1~1埃范围内的称硬X射线,1~10埃范围内的称软X射线。X射线是一种波长很短的电磁辐射,其波长约为(20~0.06)×10-8厘米之间。伦琴射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。当在真空中,高速运动的电子轰击金属靶时,靶就放出X射线,这就是X射线管的结构原理。放出的X射线分为两类:(1)如果被靶阻挡的电子的能量,不越过一定限度时,只发射连续光谱的辐射。这种辐射叫做轫致辐射;(2)一种不连续的,它只有几条特殊的线状光谱,这种发射线状光谱的辐射叫做特征辐射。连续光谱的性质和靶材料无关,而特征光谱和靶材料有关,不同的材料有不同的特征光谱这就是为什么称之为“特征”的原因。 X射线的特征是波长非常短,频率很高。因此X射线必定是由于原子在能量相差悬殊的两个能级之间的跃迁而产生的。所以X射线光谱是原子中最靠内层的电子跃迁时发出来的,而光学光谱则是外层的电子跃迁时发射出来的。X射线在电场磁场中不偏转。这说明X射线是不带电的粒子流。1906年,实验证明X射线是波长很短的一种电磁波,因此能产生干涉、衍射现象。X射线用来帮助人们进行医学诊断和治疗;用于工业上的非破坏性材料的检查;在基础科学和应用科学领域内,被广泛用于晶体结构分析,及通过X射线光谱和X射线吸收进行化学分析和原子结构的研究。 X射线的特征是波长非常短,频率很高,其波长约为(20~0.06)×10-8厘米之间。因此X射线必定是由于原子在能量相差悬殊的两个能级之间的跃迁而产生的。所以X射线光谱是原子中最靠内层的电子跃迁时发出来的,而光学光谱则是外层的电子跃迁时发射出来的。X射线在电场磁场中不偏转。这说明X射线是不带电的粒子流,因此能产生干涉、衍射现象。 X射线谱由连续谱和标识谱两部分组成 ,标识谱重叠在连续谱背景上,连续谱是由于高速电子受靶极阻挡而产生的 轫致辐射 ,其短波极限λ 0 由加速电压V决定:λ 0 = hc /( ev )为普朗克常数, e 为电子电量, c 为真空中的光速。标识谱是由一系列线状谱组成,它们是因靶元素内层电子的跃迁而产生,每种元素各有一套特定的标识谱,反映了原子壳层结构 。同步辐射源可产生高强度的连续谱X射线,现已成为重要的X射线源。 X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。当在真空中,高速运动的电子轰击金属靶时,靶就放出X射线,这就是X射线管的结构原理。 参考: http://baike.baidu.com/view/45735.htm


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/374301.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-14
下一篇2023-05-14

发表评论

登录后才能评论

评论列表(0条)

    保存