直拉单晶硅中如何通过工艺控制氧含量和提高其分布均匀性?

直拉单晶硅中如何通过工艺控制氧含量和提高其分布均匀性?,第1张

区熔硅单晶(float zone silicon crystal) 用区熔法单晶生长技术制备的半导体硅材料,是重要的硅单晶产品。由于硅熔体与坩埚容器起化学作用,而且利用硅表面张力大的特点,故采用悬浮区熔法,简称FZ法或FZ单晶。特点和应用 由于不用坩埚,避免了来自坩埚的污染,而且还可以利用悬浮区熔进行多次提纯,所以单晶的纯度高。用于制作电力电子器件、光敏二极管、射线探测器、红外探测器等。Fz单晶的氧含量比直拉硅单晶(见半导体硅材料)的氧含量低2~3个数量级,这一方面不会产生由氧形成的施主与沉积物,但其机械强度却不如直拉单晶硅,在器件制备过程中容易产生翘曲和缺陷。在Fz单晶中掺入氮可提高其强度。工艺特点 大直径生长,比直拉硅单晶困难得多,要克服的主要问题是熔区的稳定性。这可用“针眼技术”解决,在FZ法中这是一项重大成就。另一项重大成就是中子嬗变掺杂。它使电力电子器件得到飞跃发展。Fz技术无法控制熔体对流和晶/熔边界层厚度,因而电阻率的波动比cZ单晶大。高的电阻率不均匀性限制了大功率整流器和晶闸管的反向击穿电压。利用中子嬗变掺杂可获得掺杂浓度很均匀的区熔硅(简称NTD硅),从而促进了大功率电力电子器件的发展与应用。区熔硅的常规掺杂方法有硅芯掺杂、表面涂敷掺杂、气相掺杂等,以气相掺杂最为常用。晶体缺陷 区熔硅中的晶体缺陷有位错和漩涡缺陷。中子嬗变晶体还有辐照缺陷,在纯氢或氩一氢混合气氛中区熔时,常引起氢致缺陷。其中漩涡缺陷有A、B、C和D四种,其特性及易出现的主要条件列于 漩涡缺陷有害,它使载流子寿命下降,进而导致器件特性劣化。在器件工艺中它可转化为位错、层错及形成局部沉淀,从而造成微等离子击穿或使PN结反向电流增大。这种缺陷不仅使高压大功率器件性能恶化,而且使CCD产生暗电流尖峰。在单晶制备过程中减少漩涡缺陷的措施有尽量降低碳含量、提高拉晶速度等。’ 90年代的水平90年代以来达到的是:区熔硅单晶的最大直径为150mm,并已商品化,直径200mm的产品正在试验中。晶向一般为<111)和。 (1)气相掺杂区熔硅单晶。N型掺磷、P型掺硼。无位错、无漩涡缺陷。碳浓度[C。]<2×10“at/cm3,典型的可<5×1015at/cm3。氧浓度<1×1016at/cm3。电阻率范围和偏差列于表2,少子寿命值列于表3。

实验室制备氧气的方法如下:

高锰酸钾制氧、过氧化氢(双氧水)、氯酸钾分解(一般加二氧化锰作催化剂)、过氧化钠与水反应等。

氧是人体进行新陈代谢的关键物质,是人体生命活动的第一需要。呼吸的氧转化为人体内可利用的氧,称为血氧。血液携带血氧向全身输入能源,血氧的输送量与心脏、大脑的工作状态密切相关。

心脏泵血能力越强,血氧的含量就越高;心脏冠状动脉的输血能力越强,血氧输送到心脑及全身的浓度就越高,人体重要器官的运行状态就越好。

爆炸性强氧化剂。过氧化氢本身不燃,但能与可燃物反应放出大量热量和氧气而引起着火爆炸。过氧化氢在pH值为3.5~4.5时最稳定,在碱性溶液中极易分解,在遇强光,特别是短波射线照射时也能发生分解。

当加热到 100℃以上时,开始急剧分解。它与许多有机物如糖、淀粉、醇类、石油产品等形成爆炸性混合物,在撞击、受热或电火花作用下能发生爆炸。过氧化氢与许多无机化合物或杂质接触后会迅速分解而导致爆炸,放出大量的热量、氧和水蒸气。

大多数重金属(如铁、铜、银、铅、汞、锌、钴、镍、铬、锰等)及其氧化物和盐类都是活性催化剂,尘土、香烟灰、碳粉、铁锈等也能加速分解。浓度超过74%的过氧化氢,在具有适当的点火源或温度的密闭容器中,能产生气相爆炸。

以上内容参考:百度百科-实验室制氧气


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/374461.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-14
下一篇2023-05-14

发表评论

登录后才能评论

评论列表(0条)

    保存