显然,访问本地内存的速度将远远高于访问远地内存(系统内其它节点的内存)的速度,这也是非一致存储访问NUMA的由来。由于这个特点,为了更好地发挥系统性能,开发应用程序时需要尽量减少不同CPU模块之间的信息交互。利用NUMA技术,可以较好地解决原来SMP系统的扩展问题,在一个物理服务器内可以支持上百个CPU。比较典型的NUMA服务器的例子包括HP的Superdome、SUN15K、IBMp690等。
但NUMA技术同样有一定缺陷,由于访问远地内存的延时远远超过本地内存,因此当CPU数量增加时,系统性能无法线性增加。如HP公司发布Superdome服务器时,曾公布了它与HP其它UNIX服务器的相对性能值,结果发现,64路CPU的Superdome (NUMA结构)的相对性能值是20,而8路N4000(共享的SMP结构)的相对性能值是6.3。从这个结果可以看到,8倍数量的CPU换来的只是3倍性能的提升。
NUMA(Non-Uniform Memory Access)非均匀内存访问架构是指多处理器系统中,内存的访问时间是依赖于处理器和内存之间的相对位置的。 这种设计里存在和处理器相对近的内存,通常被称作本地内存;还有和处理器相对远的内存, 通常被称为非本地内存。UMA(Uniform Memory Access)均匀内存访问架构则是与NUMA相反,所以处理器对共享内存的访问距离和时间是相同的。
由此可知,不论是NUMA还是UMA都是SMP架构的一种设计和实现上的选择。
阅读文档时,也常常能看到ccNUMA(Cache Coherent NUMA),即缓存一致性NUMA架构。 这种架构主要是在NUMA架构之上保证了多处理器之间的缓存一致性。降低了系统程序的编写难度。
x86多处理器发展历史上,早期的多核和多处理器系统都是UMA架构的。这种架构下, 多个CPU通过同一个北桥(North Bridge)芯片与内存链接。北桥芯片里集成了内存控制器(Memory Controller)。
NUMA(Non Uniform Memory Access)技术可以使众多服务器像单一系统那样运转,同时保留小系统便于编程和管理的优点。基于电子商务应用对内存访问提出的更高的要求,NUMA也向复杂的结构设计提出了挑战。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)