扫描电子显微镜可以观察到哪些组织

扫描电子显微镜可以观察到哪些组织,第1张

扫描电子显微镜(SEM)是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。

二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。

扫描电子显微镜在新型陶瓷材料显微分析中的应用

1 显微结构的分析

在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其最后的性能。扫描电子显微镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析。扫描电子显微镜拍出的图像真实、清晰,并富有立体感,在新型陶瓷材料的三维显微组织形态的观察研究方面获得了广泛地应用。

由于扫描电子显微镜可用多种物理信号对样品进行综合分析,并具有可以直接观察较大试样、放大倍数范围宽和景深大等特点,当陶瓷材料处于不同的外部条件和化学环境时,扫描电子显微镜在其微观结构分析研究方面同样显示出极大的优势。主要表现为: ⑴力学加载下的微观动态 (裂纹扩展)研究 ;⑵加热条件下的晶体合成、气化、聚合反应等研究 ;⑶晶体生长机理、生长台阶、缺陷与位错的研究; ⑷成分的非均匀性、壳芯结构、包裹结构的研究; ⑸晶粒相成分在化学环境下差异性的研究等。

2 纳米尺寸的研究

纳米材料是纳米科学技术最基本的组成部分,可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒 ”。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,纳米陶瓷在

一定的程度上也可增加韧性、改善脆性等,新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。纳米材料的一切独特性主要源于它的纳米尺寸,因此必须

首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。纵观当今国内外的研究状况和最新成果,该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜、原子力显微镜等

技术,但高分辨率的扫描电子显微镜在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可操作性强的优势被大量采用。另外如果将扫描电子显微镜与扫描隧道

显微镜结合起来,还可使普通的扫描电子显微镜升级改造为超高分辨率的扫描电子显微镜。图 2所示是纳米钛酸钡陶瓷的扫描电镜照片,晶粒尺寸平均为

20nm。

3 铁电畴的观测

压电陶瓷由于具有较大的力电功能转换率及良好的性能可调控性等特点在多层陶瓷驱动器、微位移器、换能器以及机敏材料与

器件等领域获得了广泛的应用。随着现代技术的发展,铁电和压电陶瓷材料与器件正向小型化、集成化、多功能化、智能化、高性能和复合结构发展,并在新型陶瓷

材料的开发和研究中发挥重要作用。铁电畴

(简称电畴)是其物理基础,电畴的结构及畴变规律直接决定了铁电体物理性质和应用方向。电子显微术是观测电畴的主要方法,其优点在于分辨率高,可直接观察

电畴和畴壁的显微结构及相变的动态原位观察 (电畴壁的迁移)。

扫描电子显微镜观测电畴是通过对样品表面预先进行化学腐蚀来实现的,由于不同极性的畴被腐蚀的程度不一样,利用腐蚀剂可在铁电体表面形成凹凸不平的区域从而可在显微镜中进行观察。因此,可以将样品表面预先进行化学腐蚀后,利用扫描电子显微镜图像中的黑白衬度来判断不同取向的电畴结构。对不同的铁电晶体选择合适的腐蚀剂种类、浓度、腐蚀时间和温度都能显示良好的畴图样。图 3是扫描电子显微镜观察到的 PLZT材料的 90°电畴。扫描电子显微镜 与其他设备的组合以实现多种分析功能。

在实际分析工作中,往往在获得形貌放大像后,希望能在同一台仪器上进行原

位化学成分或晶体结构分析,提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析。为了适应不同分析目的的要求,在扫

描电子显微镜上相继安装了许多附件,实现了一机多用,成为一种快速、直观、综合性分析仪器。把扫描电子显微镜应用范围扩大到各种显微或微区分析方面,充分显示了扫描电镜的多种性能及广泛的应用前景。

目前扫描电子显微镜的最主要组合分析功能有:X射线显微分析系统(即能谱仪,EDS),主要用于元素的定性和定量分析,并可分析样品微区的化学成分等信息;电子背散射系统 (即结晶学分

析系统),主要用于晶体和矿物的研究。随着现代技术的发展,其他一些扫描电子显微镜组合分析功能也相继出现,例如显微热台和冷台系统,主要用于观察和分析

材料在加热和冷冻过程中微观结构上的变化;拉伸台系统,主要用于观察和分析材料在受力过程中所发生的微观结构变化。扫描电子显微镜与其他设备组合而具有的

新型分析功能为新材料、新工艺的探索和研究起到重要作用。

合成透明稳定的溶胶对于制备优异电性能的BaTiO3(BT)薄膜是尤为关键的一步。以无水乙醇、异丙醇、乙二醇和乙二醇甲醚4种溶剂做对比,从合成溶胶的稳定性、表面张力以及制备出的BaTiO3薄膜的SEM等几方面比较了4种溶剂的优缺点,最后以乙二醇甲醚合成的溶胶最清晰、稳定,用此溶胶在Si(100)基底上得到了均匀无开裂的钛酸钡薄膜。

[关键词]BaTiO3薄膜;溶胶-凝胶法;溶剂;选择;表面张力

[中图分类号] O 648.16 [文献标识码] A[文章编号] 1003-5095(2010)02-0027-03

BaTiO3薄膜具有高的介电常数,良好的铁电、压电和绝缘性能,并随着器件的高集成、微型化的要求,BaTiO3薄膜在各领域受到高度重视。随着薄膜技术的进步,人们已经通过脉冲激光沉积、射频磁控溅射、水热法、金属有机物气相沉积(MOCVD)和溶胶-凝胶(Sol-Gol)等方法制备出了BaTiO3薄膜。溶胶-凝胶法由于反应在溶液中进行,均匀度高,而且烧结温度低、设备简单等而受到广泛的关注。而溶胶-凝胶法中一个重要的问题就是如何选择合适的原材料和合适的溶剂,这将最终影响薄膜的电学性质。

本文除了从溶胶的稳定性、薄膜的电子显微(SEM)照片等方面考察了4种溶剂的区别,其独到之处在于从溶胶的表面张力方面考察了不同溶剂合成的溶胶对基底的附着能力的强弱。综合考虑几方面的性能,选择出了能够生成稳定溶胶、溶胶与基片的结合性好、所制备的膜表面光滑、均匀的溶剂,为得到优异电性能的多层BaTiO3薄膜打下了基础。

1 实验

1.1 试剂及仪器

Ba(CH3COO)2(分析纯),天津市天大化工实验厂;Ti(OC4H9)4(Ⅲ级化学纯),北京化工厂;冰醋酸(分析纯),天津市大茂化学仪器供应站;乙二醇甲醚(分析醇),天津天泰精细化学品有限公司;乙二醇(分析纯),石家庄市有机化工厂;无水乙醇(分析纯),北京化工厂;异丙醇,山东省禹王实业总公司化学试剂厂。

日立S-570扫描电镜;表面张力测定仪(南京桑力实验设备有限公司)。

1.2 实验步骤

取一定量的Ba(CH3COO)2溶于热乙酸中,加入等物质量的比的Ti(OC4H9)4,搅拌过程中加入适量的水,使其水解,用溶剂把溶胶调成一定的浓度,搅拌1 h后形成黄色透明溶胶,过滤,取滤液在单晶Si(100)片上甩膜50 s,在一定温度下热分解,最后在973 K左右进行退火处理,就得到了以单晶硅为基质的钛酸钡薄膜。

2 结果与讨论

首先考察分别用4种溶剂合成的溶胶与基片Si之间的浸润情况,再根据甩膜后薄膜的表面形貌情况来选择最佳溶剂。实验所选用的溶剂为无水乙醇、异丙醇、乙二醇和乙二醇甲醚。

2.1 稳定性比较

溶胶制备过程中,醇盐中的-OR基会与醇溶剂中的-OR互相交换,这就可能造成醇盐水解活性的变化,同一醇盐选用的溶剂不同,其水解速率、凝胶时间也就随之改变[1]。相同条件下,选用的4种溶剂制备的溶胶时,其溶胶的稳定性:乙二醇为溶剂时,溶胶澄清透明、非常稳定,可保持1年以上;乙二醇甲醚为溶剂时溶胶能稳定存在10 d左右;用无水乙醇作溶剂的溶胶凝胶化时间需要大概7 d;异丙醇为溶剂时,溶胶不稳定,12 h之内便有不溶物析出,经实验测定为醋酸钡从溶胶中析出,而溶胶的稳定性的好坏直接影响制备多层膜工作的连续性。经实验对比,得出以4种物质为溶剂制备溶胶的稳定性依次为乙二醇>乙二醇甲醚>无水乙醇>异丙醇。

2.2 表面张力的比较

要使溶胶很好地附着在基片上,就必须考虑两者之间的相互作用,宏观上就是浸润问题,从热力学角度看属于表面能问题。基于这种理论,研究不同物质作溶剂时,用溶胶的表面张力的大小来说明溶胶与基片的附着问题。

2.2.1 实验步骤

采用最大泡压法测定所制得的溶胶的表面张力。

式中,σ是待测液的表面张力;r是毛细管的内半径;ΔP最大是气泡脱离时的最大压差。测量时,先用已知表面张力的液体水测求仪器常数值即毛细管的内半径。

测量待测液的表面张力:用在同样条件下制备的待测液,润洗支管试管和毛细管后,加入适量的样品于支管试管中,分别测得用无水乙醇、异丙醇、乙二醇甲醚、乙二醇作为溶剂的溶胶的最大压差,并计算出4种溶胶的表面张力。

2.2.2 实验数据

实验数据如表1、表2所示。由表1得出,所选用仪器的毛细管半径为0.169 8 mm。表2测得待测液气泡脱离时的最大压差,在得到毛细管半径的基础上,计算表面张力。

2.2.3 实验结果

分析薄膜在基片上是否能很好地附着,可以看二者是否能很好地互相浸润。因为金属是高表面能材料,而氧化物是低表面能材料。表面能的相对大小决定一种材料是否和另外一种材料相湿润并形成均匀的黏附层。具有非常低表面能的材料容易和具有较高表面能的材料相湿润[2-5]。即表面张力小的材料容易在表面张力大的材料表面形成吸附牢固的膜,反之则不能形成均匀的膜,而得到岛状沉积物。单晶硅是固体材料具有非常大的表面能,所以4种溶剂所制溶胶中,表面张力小的,应该与基片结合得最好,从实测数据得出以4种物质为溶剂所制备的溶胶其表面张力为乙二醇>乙二醇甲醚>无水乙醇>异丙醇,其结论和目测的实验结果正好相符。异丙醇和无水乙醇为溶剂时,膜与基片结合得好,溶胶能完全在单晶硅上铺展开,形成很均匀的单层膜。乙二醇甲醚为溶剂制得溶胶甩膜时,不如前两个好,但也较均匀,基本上能铺展开。乙二醇为溶剂因为其表面张力最大,溶胶和基片不浸润,甩膜一定时间后,溶胶仍然聚集在一起,形成岛状结构,不能铺展开。

2.3 SEM比较

溶剂的挥发性是影响薄膜质量的重要方面,Brinker认为Sol-Gol法制备膜的多孔性依赖于分子级产物的结构、缩聚和蒸发的相对速率几方面,缩聚使薄膜变硬,蒸发使其致密,提高蒸发速率有利于形成致密的薄膜 ,蒸发过快,膜不均匀,易留下孔洞和开裂[4,6,7]。图1是4种不同溶剂合成的溶胶制成的钛酸钡薄膜的电子显微镜照片。

a 无水乙醇为溶剂;b 乙二醇为溶剂;

c 异丙醇为溶剂;d 乙二醇甲醚为溶剂

图1 不同物质作溶剂时BaTiO3薄膜SEM图

从图1中a可看出以无水乙醇为溶剂时,膜的表面很不光滑,和无水乙醇挥发性极强有关,乙醇快速挥发导致薄膜形成快速而出现斑痕,难以得到均匀致密的薄膜。乙二醇和异丙醇作为溶剂时钛酸钡的表面出现了裂痕和孔洞,虽然薄膜上没有裂开的地方,薄膜很均匀,但是颗粒小,不利于形成具有铁电性的薄膜。乙二醇甲醚作溶剂的膜表面比较均匀、光滑,而且晶粒也较大。

3 结 论

通过以上3方面的比较,可以看出,4种溶剂各有利弊:无水乙醇和基片结合得好,溶胶较稳定,但由于其挥发性太强,导致用其制备的BaTiO3的微观形貌不好;异丙醇为溶剂时溶胶最不稳定,不利于实验的连续进行:乙二醇为溶剂其溶胶的稳定性很强,对连续性工作非常有易,但其最大的弊端是与基片的黏附性不好,这样将得不到实验所需要的膜;乙二醇甲醚为溶剂时,溶胶与基片的结合好,膜表面较光滑,颗粒大,虽然稳定性不是最强,但基本能满足实验的要求,综合以上实验结果,最终认为选择乙二醇甲醚为溶剂来制备钛酸钡薄膜前驱体溶胶比较合理,为进一步合成多层具有铁电性质的薄膜奠定了基础。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/384188.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-16
下一篇2023-05-16

发表评论

登录后才能评论

评论列表(0条)

    保存