显著性为负数怎么解释

显著性为负数怎么解释,第1张

模型显著是综合而言的,系数显著性是其中的个体。个体并不能代表整体,整体是个体综合的结果。但一般而言,模型显著,说明模型是合理的,其中系数不显著的变量则不具有进行分析的意义。

显著性的含义是指两个群体的态度之间的任何差异是由于系统因素而不是偶然因素的影响。我们假定控制了可能影响两个群体之间差异的所有其他因素,因此,余下的解释就是我们所推断的因素,而这个因素不能够100%保证,所以有一定的概率值,叫显著性水平。

指零假设为真的情况下拒绝零假设所要承担的风险水平,又叫概率水平,或者显著水平。

双向固定效应模型系数为负数,这种结果主要出在数据的反向性上,有些心理健康量表得分越高表示越健康,但有些量表则是得分越高表示越不健康。要解决这个问题,

1、要确保样本量足够。

2、要重新整理变量的测量指标结构,通过探索性因子分析来协助构建潜变量测量模型,最后是删除或合并共线性指标。

R包lavaan可以做

https://www.codetd.com/article/916129

软件AMOS可以做

https://mp.weixin.qq.com/s?__biz=MjM5MTI5MDgxOA==&mid=2650098738&idx=1&sn=319fcc4198fbcd36fc30fd1329e27bf0&chksm=beb6289f89c1a189115d96bb0f9bc3114a752f9bf1fed4c9979b2e965322d8e38c60844316de&scene=21#wechat_redirect

https://mp.weixin.qq.com/s?__biz=MjM5MTI5MDgxOA==&mid=2650098759&idx=1&sn=0099b81e77a2f8b6324e88a5b49773ed&chksm=beb628ea89c1a1fcdb4c068466e6f099e0bd1af0909bbc538aca4247477978b4b52b3b9aa036&scene=21#wechat_redirect

https://www.jianshu.com/p/d698dc099dec

https://www.jianshu.com/p/e0938fb35c45

https://blog.csdn.net/yjj20007665/article/details/66967966

χ2 卡方拟合指数 检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。原假设是模型协方差阵等于样本协方差阵。如果模型拟合的好,卡方值应该不显著。

RMR 是残差均方根。RMR 是样本方差和协方差减去对应估计的方差和协方差的平方和,再取平均值的平方根。RMR应该小于0.08,RMR越小,拟合越好。

RMSEA 是近似误差均方根 RMSEA应该小于0.06,越小越好。

GFI 是拟合优度指数,范围在0和1间,但理论上能产生没有意义的负数。按照约定,要接受模型,GFI 应该等于或大于0.90。

CFI 是比较拟合指数,其值位于0和1之间。CFI 接近1表示拟合非常好,其值大于0.90表示模型可接受,越接近1越好。

同时要求样本和指标之间有一个最低数量比例


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/390306.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-17
下一篇2023-05-17

发表评论

登录后才能评论

评论列表(0条)

    保存