2.数据收集:明确了分析目的,接下来就是开工收集数据了。数据的来源有很多种,例如原始数据(第一手数据)、数据库(第二手数据)、公开出版物、互联网、市场调查等。公司普遍都有数据库,常用于公司业务等方面的分析;《世界发展报告》、《中国人口统计》等是很常用的公开出版物,具有一定的权威性。利用国家统计局网站、政府机构网站、传播媒体网站等,是最常用的互联网获取数据方式。
3.数据处理:包括数据清洗、转换、分组等处理方法。我们拿到的数据,通常情况下是不可直接使用的,比如数据有丢失、重复、有录入错误或存在多余维度等情况。只有经过处理后的数据才可以使用。
4.数据分析:在明确分析思路的前提下,选用适合的分析方法对处理后的数据进行分析。
5.数据展现:将分析结果用图表来展现。这也是需要花费一番功夫的,比如你想展示本月的网站用户转化率情况,可以选择柱形图,但为了体现每阶段用户流失情况,以漏斗图展示更为直观贴切。所以数据展现阶段,你需要思考“采用这个图表,能否清晰的表达出分析结果?我想表达的观点是否完全展示出来了?”
6.报告撰写:将数据分析的整个过程和结果,以书面的形式向他人说明。需要将分析目的、数据来源、分析过程、分析结论和建议等内容展现在报告中。
以上就是数据分析的流程,希望你我共同努力,在数据分析师的道路上,不断升级打怪,修炼自我,朝着专家领域进发!
首先我说说这两种方向共同需要的技术面,当然以下只是按照数据分析入门的标准来写:1. SQL(数据库),我们都知道数据分析师每天都会处理海量的数据,这些数据来源于数据库,那么怎么从数据库取数据?如何建立两表、三表之间的关系?怎么取到自己想要的特定的数据?等等这些数据选择问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能,零基础学习SQL可以阅读这里:SQL教程_w3cschool
2. 统计学基础,数据分析的前提要对数据有感知,数据如何收集?数据整体分布是怎样的?如果有时间维度的话随着时间的变化是怎样的?数据的平均值是什么?数据的最大值最小值指什么?数据相关与回归、时间序列分析和预测等等,这些在网易公开课上倒是有不错的教程:哈里斯堡社区大学公开课:统计学入门_全24集_网易公开课
3.Python或者R的基础,这一点是必备项也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。至于学习资料:R语言我不太清楚,Python方向可以在廖雪峰廖老师的博客里看Python教程,面向零基础。
再说说两者有区别的技能树:
1.数据挖掘向
我先打个前哨,想要在一两个月内快速成为数据挖掘向的数据分析师基本不可能,做数据挖掘必须要底子深基础牢,编程语言基础、算法、数据结构、统计学知识样样不能少,而这些不是你自习一两个月就能完全掌握的。
所以想做数据挖掘方向的,一定要花时间把软件工程专业学习的计算机基础课程看完,这些课程包括:数据结构、算法,可以在这里一探究竟:如何学习数据结构?
在此之后你可以动手用Python去尝试实现数据挖掘的十八大算法:数据挖掘18大算法实现以及其他相关经典DM算法
2.产品经理向
产品经理向需要你对业务感知能力强,对数据十分敏感,掌握常用的一些业务分析模型套路,企业经常招聘的岗位是:商业分析、数据运营、用户研究、策略分析等等。这方面的学习书籍就很多,看得越多掌握的方法越多,我说几本我看过的或者很多人推荐的书籍:《增长黑客》、《网站分析实战》、《精益数据分析》、《深入浅出数据分析》、《啤酒与尿布》、《数据之魅》、《Storytelling with Data》
数据分析的精髓在于分析的思维,所以在分析之前需要明确分析的目的是什么以及分析的思路是什么,这个可以用到5h1w进行拓展自己的思维,一般情况明确为什么,为什么进行这次数据分析解决什么,解决什么问题哪些角度,从哪些角度思考解决方法,哪个方法更好等等。明确思维之后就需要做好数据收集的工作了,数据的来源对数据分分析也是十分重要,尽可能获取一手数据,如原始数据,此外还有数据库中的数据,出版的年鉴,统计网站和普查等。
接下来就是对找到的数据进行处理,清洗数据,对数据进行转换,数据的分组等,数据中错误的需要修改或者删除,不是一维表的需要转换成一维表,数据的分组会让数据分析更加高效。
数据分析,这里就需要有个清晰的思路,明确的目的的情况下选择合适的分析方法进行数据的分析。
数据分析出来的结果需要用合适图表的形式展现出来,这样可以帮助我们更清晰的得出数据分析的结果,更全面的表达观点。
报告的撰写,内容主要包括以上几点,分析的目的和思路,数据的来源,本次数据分析的过程,分析的结论和要点等。更全面的展现出数据表达的含义。
关于完整的数据分析有哪些步骤,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)