另一方面,钙钛矿薄膜的反应程度也会直接影响钙钛矿薄膜的质量,而目前对钙钛矿薄膜反应程度的判断尚未见到有效的方法。无论是溶液法还是气相法制备钙钛矿薄膜,只有当几种前驱体的摩尔量符合化学计量数之比时,钙钛矿薄膜才能充分反应,当其中一种前驱体的量不足时,钙钛矿就会出现反应不充分的情况。以最常见的mapbi3钙钛矿材料为例,它是由mai和pbi2两种前驱体通过化学反应转化而成,当mai前驱体的量不足时,钙钛矿的转化不充分,此时薄膜中会残留较多的pbi2前驱体,使得钙钛矿薄膜在光照下,从正面(入光面为正面,即导电玻璃基底这一面)看去会呈现淡黄色,说明钙钛矿薄膜对可见光的吸收尚不充分。当mai的量逐渐符合化学计量数之比时,mapbi3的反应程度逐渐达到充分状态。在这一过程中,从正面观察钙钛矿薄膜所呈现出来的颜色变化会从淡黄色逐渐变为青绿色,再到淡蓝色,最后到紫色,这也从侧面印证了钙钛矿薄膜对光的吸收逐渐扩展至整个可见光范围。钙钛矿薄膜的这种颜色变化过程恰好为我们提供了一种判断其反应程度的指标。
机器视觉是一种使用机器代替人眼进行检测和判断的工业系统,其通过图像拍摄装置摄取待检测样品的图像信息,并传输至专用的图像处理系统。图像处理系统会将检测样品的颜色、亮度、均匀性等信息转换成数字信号,并与数据库中的标准样品进行比对,从而做出判断和筛选,并将结果反馈给现场工作的设备和检测人员。相比于人工检测与筛选,机器视觉大大提高了样品检测的准确性和生产效率,并在一些不适合人工作业的危险环境中发挥着重要作用。机器视觉的应用越来越广泛。
在锂离子电池发展的过程当中,我们希望获得大量有用的信息来帮助我们对材料和器件进行数据分析,以得知其各方面的性能。目前,锂离子电池材料和器件常用到的研究方法主要有表征方法和电化学测量,下面跟铄思百小编一起来看看锂电材料的检测方法吧!电化学测试主要分为三个部分:
(1)充放电测试,主要看电池充放电性能和倍率等;
(2)循环伏安,主要是看电池的充放电可逆性,峰电流,起峰位;
(3)EIS交流阻抗,看电池的电阻和极化等。
下面就锂电综合研究中用到的表征手段进行简单的介绍,大概分为八部分来讲:成分表征、形貌表征、晶体结构表征、物质官能团的表征、材料离子运输的观察、材料的微观力学性质、材料表面功函数和其他实验技术。
1、成分表征
(1)电感耦合等离子体(ICP)
用来分析物质的组成元素及各种元素的含量。ICP-AES可以很好地满足实验室主、次、痕量元素常规分析的需要;ICP-MS相比ICP-AES是近些年新发展的技术,仪器价格更贵,检出限更低,主要用于痕量/超痕量分析。
Aurbac等在研究正极材料与电解液的界面问题时,用ICP研究LiC0O2和LiFePO4在电解液中的溶解性。通过改变温度、电解液的锂盐种类等参数,用ICP测量改变参数时电解液中的Co和Fe含量的变化,从而找到减小正极材料在电解液中溶解的关键[1]。值得注意的是,若元素含量较高(例如高于20%),使用ICP检测时误差会大,此时应采用其他方式。
(2)二次离子质谱(SIMS)
通过发射热电子电离氩气或氧气等离子体轰击样品的表面,探测样品表面溢出的荷电离子或离子团来表征样品成分。可以对同位素分布进行成像,表征样品成分;探测样品成分的纵向分布
Ota等用TOF—SIMS技术研究了亚硫酸乙烯酯作为添加剂加到标准电解液后,石墨负极和LiC0O2正极表面形成SEI膜的成分[2]。Castle等通过SIMS探测V2O5在嵌锂后电极表面到内部Li+的分布来研究Li+在V2O5中的扩散过程[3]。
(3)X射线光子能谱(XPS)
由瑞典Uppsala大学物理研究所Kai Siegbahn教授及其小组在20 世纪五六十年代逐步发展完善。X射线光电子能谱不仅能测定表面的组成元素,而且还能给出各元素的化学状态信息,能量分辨率高,具有一定的空间分辨率(目前为微米尺度)、时间分辨率(分钟级)。
用于测定表面的组成元素、给出各元素的化学状态信息。
胡勇胜等用XPS研究了在高电压下VEC在石墨表面生成的SEI的成分,主要还是以C、O、Li为主,联合FTIR发现其中主要成分为烷氧基锂盐[4]。
(4)电子能量损失谱(EELS)
利用入射电子引起材料表面电子激发、电离等非弹性散射损失的能量,通过分析能量损失的位置可以得到元素的成分。EELS相比EDX对轻元素有更好的分辨效果,能量分辨率高出1~2个量级,空间分辨能力由于伴随着透射电镜技术,也可以达到10−10 m的量级,同时可以用于测试薄膜厚度,有一定时间分辨能力。通过对EELS谱进行密度泛函(DFT)的拟合,可以进一步获得准确的元素价态甚至是电子态的信息。
AI.Sharab等在研究氟化铁和碳的纳米复合物电极材料时利用STEM—EELS联合技术研究了不同充放电状态时氟化铁和碳的纳米复合物的化学元素分布、结构分布及铁的价态分布[5]。
(5)扫描透射X射线显微术(STXM)
基于第三代同步辐射光源以及高功率实验室X 光源、X射线聚焦技术的新型谱学显微技术。采用透射X 射线吸收成像的原理,STXM 能够实现具有几十个纳米的高空间分辨的三维成像,同时能提供一定的化学信息。STXM 能够实现无损伤三维成像,对于了解复杂电极材料、固体电解质材料、隔膜材料、电极以及电池可以提供关键的信息,而且这些技术可以实现原位测试的功能。
Sun等研究碳包覆的Li4Ti5O12与未包覆之前相比,具有更好的倍率性能和循环性能。作者利用STXM—XANES和高分辨的TEM确定了无定型的碳层均一地包覆在LTO颗粒表面,包覆厚度约为5 nm。其中通过STXM作者获得了单个LTO颗粒的C、Ti、O分布情况,其中C包覆在颗粒表面[6]。
(6)X射线吸收近边谱(XANES)
是标定元素及其价态的技术,不同化合物中同一价态的同一元素对特定能量X射线有高的吸收,我们称之为近边吸收谱。在锂电池领域中,XAS主要用于电荷转移研究,如正极材料过渡金属变价问题。
Kobayashi等用XANES研究了LiNi0.80Co0.15Al0.05O2正极材料。XANES检测到颗粒表面含有Li2Co3和其它额外立方相杂质[7]。
(7)X射线荧光光谱分析(XRF)
利用初级X射线光子或其它微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。XRF被工业界广泛应用于锂离子电池材料主成分及杂质元素分析。对某些元素检出限可以达到10-9的量级。
2、形貌表征
(1)扫描电镜(SEM)
收集样品表面的二次电子信息,反应样品的表面形貌和粗糙程度,带有EDS配件的SEM可以进一步分析元素种类、分布以及半定量的分析元素含量。虽然SEM的分辨率远小于TEM,但它仍是表征电池材料的颗粒大小和表面形貌的最基本的工具
李文俊等利用密封转移盒转移样品的基础上,重新设计了针对金属锂电极的扫描电镜的样品托架,研究了金属锂电极在Li的嵌入和脱出过程中表面孔洞和枝晶的形成过程[8]。
(2)透射电镜(TEM)
材料的表面和界面的形貌和特性,在关于表面包覆以及阐述表面SEI的文献中多有介绍。TEM也可以配置能谱附件来分析元素的种类、分布等。与SEM相比TEM能观察到更小的颗粒,并且高分辨透射电镜可以对晶格进行观察,原位TEM的功能更加强大,在TEM电镜腔体中组装原位电池,同时借助于TEM的高分辨特性,对电池材料在循环过程中的形貌和结构演化进行实时的测量和分析
黄建宇等利用原位样品杆对SnO2在离子液体中嵌脱锂过程中的形貌和结构演化进行了原位表征。随后,他们对TEM原位电池实验的装置进行了改进,利用在金属Li上自然生产的氧化锂作为电解质,代替了原先使用的离子液体,提高了实验的稳定性,更好地保护了电镜腔体[9,10]。
SEM的主要用途是:1、带来更多的点击与关注;
2、带来更多的商业机会;
3、树立行业品牌;
4、增加网站广度;
5、提升品牌知名度;
6、增加网站曝光度;
7、根据关键词,通过创意和描述提供相关介绍。
SEM:英文为Search Engine Marketing ,中文为搜索引擎营销。通常简称为SEM。搜索引擎营销的基本思想是让用户发现信息,并通过(搜索引擎)搜索点击进入网站/网页进一步了解他所需要的信息。在介绍搜索引擎策略时,一般认为,搜索引擎优化设计主要目标有2个层次:被搜索引擎收录、在搜索结果中排名。
搜索引擎营销的基本思想是让用户发现信息,并通过(搜索引擎)搜索点击进入网站/网页进一步了解他所需要的信息。在介绍搜索引擎策略时,一般认为,搜索引擎优化设计主要目标有2个层次:被搜索引擎收录、在搜索结果中排名靠前。这已经是常识问题,简单来说SEM所做的就是以最小的投入在搜索引擎中获最大的访问量并产生商业价值。多数网络营销人员和专业服务商对搜索引擎的目标设定也基本处于这个水平。但从实际情况来看,仅仅做到被搜索引擎收录并且在搜索结果中排名靠前还很不够,因为取得这样的效果实际上并不一定能增加用户的点击率,更不能保证将访问者转化为顾客或者潜在顾客,因此只能说是搜索引擎营销策略中两个最基本的目标。
SEM 的方法包括搜索引擎优化(SEO)、付费排名、以及付费收录。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)