离子显微镜 原理

离子显微镜 原理,第1张

分类: 理工学科

问题描述:

谁知道离子显微镜是做什么用的?它的原理是什么,说细一些。谢谢

解析:

离子显微镜

E.W.弥勒于1951年发明的一种分辨率极高 (2~3┱)、能直接用于观察金属表面原子的分析装置,简称FIM。

FIM(Field Ion Microscope)是最早达到原子分辨率,也就是最早能看得到原子尺度的显微镜。只是要用FIM看像,样品得先处理成针状,可不是粗针、细针都行喔,针的末端曲率半径约在200~1000埃。(1埃 = 10-10公尺)把样品置于真空极佳的空间中,借由和低温物的接触将其温度降到液态氮的温度以下。在空间中放入成像气体,可能为He、Ne、Ar等气体,视不同样品而定。等以上这些看像的事前工作都准备好,我们才加给样品正高压使附着在样品上的成像气体解离成带正电的阳离子,带正电的气体离子接着被电场加速射出,打到接收器讯号被放大,以电子射到荧光屏幕,我们就能在屏幕上看到一颗一颗的原子亮点。FIM是点投影的显微镜,结构很简单。但与通常的高分辨率电子显微镜不同,它成像时不使用磁或静电透镜,是由所谓成像气体的“场电离”过程来完成的。

FIM的演进

FIM是1956年Erwin W. Mueller发明。由FEM(Field Emission Microscope)发展来的。FEM的样品同样也得作成针状,在真空的环境中成像,不过样品上我们加的是负的高压,样品达到足够的负高压时,会放出电子打到荧光幕产生亮点,而这个亮点代表的并非一颗原子,是样品上一片区域,这个区域电子在同样的负高压作用下都会射出电子。因为电子在横向上 (和样品表面平行的方向) 速度分量造成绕射的情况,使得FEM的分辨率只能达到20到25埃(要看到原子分辨率至少要小于1埃)。Erwin W. Mueller做了什么事改善了分辨率呢?他加了成像气体用正高压使其解离成阳离子,并被加速射到屏幕,成像气体比电子重,而且在低温的情况下,其横向速度分量小多了,提高了分辨率,FIM便如此产生了!在此最初的FIM之后,有人对影像明暗对比、真空情况、样品冷却处理等方面渐渐改善,使得其功能愈来愈良好。

其它的原子解析显微镜

到了1970年,又有新的看得到原子的显微镜出现,SEM(Scanning Electron Microscope)只是它只能看到重原子。1983年又有STM(Scanning tunneling Microscope)此种显微镜的样品便不再只限制成针状,可用来看像的样品范围更大了。另外还有TEM,样品要切成一片很薄的膜,技术上比较困难,而且会将样品结构破坏,价钱亦较昂贵。虽说原子解析技术不再被FIM独占,但目前能有与多的研究或实验需要靠FIM才能做,像是单独原子,或单一原子团在特定的表面之原子运动过程。这些可都一定少不了FIM的!

FIM以及APFIM不仅可用于观察固体表面原子的排列,研究各种晶体缺陷(空位、位错以及晶界等),而且利用场蒸发还能观察从表面到体内的原子的三维分布状况。早期的FIM研究,主要着重于金属表面的结构缺陷,合金的晶界,偏析以及有序-无序相变和辐照损伤等。现在已逐步扩展到表面吸附、表面扩散、表面原子相互作用以及由温度或电场诱导的各种表面超结构的研究(由于APFIM的出现,近年来各种FIM研究都已进入定量化阶段。

FIB带有SEM功能;FIB另外的功能就是微纳加工。

SEM是电子束成像原理.

FIB中带有电子束成像,也可以离子束成像(一般不用,对样品表面形貌损伤太大).

如果您只观察形貌的话,用SEM即可,FIB的电子束成像方面和SEM都一模一样.

离子溅射仪为扫描电子显微镜(SEM)最基本的样品制备仪器,在一些情况下,通过使用离子溅射仪可以帮助SEM获得更好的图像及特征点。

  SEM基本上是可以对所以类型的试样进行图像处理,粉末,半导体,高分子材料,陶瓷,金属,地质材料,生物样品等。然而有些特殊的样品通过SEM收集高质量的照片,是需要操作者使用额外的样品制备的方法,这个额外的样品制备方法,通常是在试样的表面溅射一层导电薄膜材料,通常在5-20nm左右。

   需要溅射的样品

非导电材料

通常我们需要溅射喷金的非导电材料,由于它们的材料本身的非导电性,其表面带有电子陷阱,这种表面的电荷的聚集,容易造成样品表面的放电现象,是严重影响到样品的图像质量。为了消除放电现象,我们通常的解决问题的方法是降低扫描电镜样品室的真空度,这样可以将样品表面的引入正电荷的分子,它可以与放电电子相互中和,从而消除放电现象,但是此种方法并不是获取高分辨率的图像的有限办法。

获取高分辨率高质量的SEM图像,建议操作人员使用 离子溅射仪 ,在样品表面溅射一层金属薄膜,将放电电子从样品表面转移走。

电子束敏感样品

  对于SEM需要喷金的另外一类样品室电子束敏感样品。这类样品通常是生物样品和高分子样品,尤其是锂电池隔膜等。SEM的电子束具有较高的能力,在电子轰击样品的过程中,他会在样品的表面形成能力的聚集,会对样品的表面形成灼伤,从而损坏样品表面的微观相貌,这种情况下,我们会在非电子束敏感样品的表面溅射一层金属薄膜从而起到保护作用,防止样品的损失。

为了准确高分辨率高质量的SEM图像,建议操作人员选择使用离子溅射仪,在样品表面溅射一层导电通路。 离子溅射仪 的样品制备技术可以有效的提高SEM图像的质量和分辨率,在扫描电子显微镜的成像过程中,溅射材料可以有效的提高信噪比,从而获取更高质量的成像。

离子溅射仪的缺点

  由于操作简单,在使用离子溅射仪的过程中,操作人员大可不必有太多的顾虑,在操作人员需要不断调整离子溅射仪的参数,寻找合适的溅射效果,另外离子溅射有一个缺点是,溅射后的样品,不再是原始的材料,元素的衬度信息会有所丢失。但在大多数的情况下,通过多次模式参数,操作人员是可以既能够得到高分辨高质量的图像,又不会丢失样品的原始信息。

溅射材料

  通常溅射的材料是金属材料,因为导电性高,溅射颗粒小,例如我公司生产的GVC-2000磁控离子溅射仪,在溅射黄金靶材的时候,我们可以达到5-10nm的金属颗粒,如果选用铂金颗粒的直径会更小达到5nm以内,此款仪器主要配备各大电镜厂家生产的场方式电镜,正是因为溅射的颗粒小,在高分辨下,图像是没有颗粒感,可以得到较高的质量的电镜图像。

  此外,如果需要EDS能谱分析时,SEM操作人,可以通过EDS分析软件屏蔽靶材的元素选项,从而不会影响X射线与其他的元素的峰值发生冲突。

当然,我公司生产的 GVC-2000磁控离子溅射仪 ,可以支持多种靶材的选项,例如,铬,银,铜,铱等,如铜,铝等是需要接入氩气的,仪器预留好了氩气接口,可以支持链接氩气瓶使用,从而得到更小的金属颗粒,获取更高分辨率的图像。

https://www.microhezao.com


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/411277.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-22
下一篇2023-05-22

发表评论

登录后才能评论

评论列表(0条)

    保存