lavaan包是由比利时根特大学的Yves Rosseel开发的。lavaan的命名来自于 latent variable analysis,由每个单词的前两个字母组成,la-va-an——lavaan。
为什么说它简单呢? 主要是因为它的lavaan model syntax,如果你会R的回归分析,那它对你来说再简单不过了。
一、语法简介
语法一:f3~f1+f2(路径模型)
结构方程模型的路径部分可以看作是一个回归方程。而在R中,回归方程可以表示为y~ax1+bx2+c,“~”的左边的因变量,右边是自变量,“+”把多个自变量组合在一起。那么把y看作是内生潜变量,把x看作是外生潜变量,略去截距,就构成了lavaan model syntax的语法一。
语法二:f1 =~ item1 + item2 + item3(测量模型)
"=~"的左边是潜变量,右边是观测变量,整句理解为潜变量f1由观测变量item1、item2和item3表现。
语法三:item1 ~~ item1 , item1 ~~ item2
"~~"的两边相同,表示该变量的方差,不同的话表示两者的协方差
语法四:f1 ~ 1
表示截距
此外还有其它高阶的语法,详见lavaan的help文档,一般的结构方程建模分析用不到,就不再列出。
二、模型的三种表示方法
以验证性因子分析举例说明,对于如下图所示的模型:
方法一:最简化描述
只需指定最基本的要素即可,其他的由函数自动实现,对模型的控制力度最弱。只使用于函数cfa()和sem()
model<-'visual=~x1+x2+x3 textual=~x4+x5+x6 speed=~x7+x8+x9' fit <- cfa(model, data = HolzingerSwineford1939)
需要注意的是,这种指定模型的方式在进行拟合时,会默认指定潜变量的第一个测量变量的因子载荷为1,如果要指定潜变量的方差为1,可以:
model.bis <- 'visual =~ NA*x1 + x2 + x3 textual =~ NA*x4 + x5 + x6 speed =~ NA*x7 + x8 + x9 visual ~~ 1*visual textual ~~ 1*textual speed ~~ 1*speed'
方法二:完全描述
需要指定所有的要素,对模型控制力最强,适用于lavaan()函数,适合高阶使用者
model.full<- ' visual =~ 1*x1 + x2 +x3 textual =~ 1*x4 + x5 + x6 speed =~ 1*x7 + x8 +x9 x1 ~~ x1 x2 ~~ x2 x3 ~~ x3 x4 ~~ x4 x5 ~~ x5 x6 ~~ x6 x7 ~~ x7 x8 ~~ x8 x9 ~~ x9 visual ~~ visual textual ~~ textual speed ~~ speed visual ~~ textual +speed textual ~~ speed' fit <- lavaan(model.full, data = HolzingerSwineford1939)
方法三:不完全描述
最简化和完全描述的混合版,在拟合时增加 auto.* 参数,适用于lavaan()函数
model.mixed<- '# latent variables visual =~ 1*x1 + x2 +x3 textual =~ 1*x4 + x5 + x6 speed =~ 1*x7 + x8 +x9 # factor covariances visual ~~ textual + speed textual ~~ speed' fit <- lavaan(model.mixed, data = HolzingerSwineford1939, auto.var = TRUE)
可以设定的参数详见help帮助文档
PS:可以在lavaan()函数里设置参数mimic="Mplus"获得与Mplus在数值和外观上相似的结果,设置mimic="EQS",输出与EQS在数值上相似的结果
三、拟合结果的查看
查看拟合结果的最简单方法是用summary()函数,例如
summary(fit, fit.measures=TRUE)
但summary()只适合展示结果,parameterEstimates()会返回一个数据框,方便进一步的处理
parameterEstimates(fit,ci=FALSE,standardized = TRUE)
获得大于10的修正指数
MI<- modificationindices(fit) subset(MI,mi>10)
此外,还有其他的展示拟合结果的函数,功能还是蛮强大的
四、结构方程模型
(1)设定模型
model<- ' # measurement model ind60 =~ x1 + x2 +x3 dem60 =~ y1 + y2 + y3 + y4 dem65 =~ y5 + y6 + y7 + y8 # regressions dem60 ~ ind60 dem65 ~ ind60 + dem60 # redisual covariances y1 ~~ y5 y2 ~~ y4 +y6 y3 ~~ y7 y4 ~~ y8 y6 ~~ y8'
(2)模型拟合
fit <- sem(model, data = PoliticalDemocracy) summary(fit, standardized = TRUE)
(3)给回归系数设置标签
给回归系数设定标签在做有约束条件的结构方程模型时会很有用。当两个参数具有相同的标签时,会被视为同一个,只计算一次。
model.equal <- '# measurement model ind60 =~ x1 + x2 + x3 + dem60 =~ y1 + d1*y2 + d2*y3 + d3*y4 dem65 =~ y5 + d1*y6 + d2*y7 + d3*y8 # regressions dem60 ~ ind60 dem65 ~ ind60 + dem60 # residual covariances y1 ~~ y5 y2 ~~ y4 + y6 y3 ~~ y7 y4 ~~ y8 y6 ~~ y8'
(4)多组比较
anova(fit, fit.equal)
anova()会计算出卡方差异检验
(5)拟合系数
lavaan包可以高度定制化的计算出你想要的拟合指标值,例如,我想计算出卡方、自由度、p值、CFI、NFI、IFI、RMSEA、EVCI的值
fitMeasures(fit,c("chisq","df","pvalue","cfi","nfi","ifi","rmsea","EVCI"))
(6)多组结构方程
在拟合函数里面设置 group参数即可实现,同样的可以设置group.equal参数引入等式限制
五、作图
Amos以作图化操作见长,目前版本的Mplus也可以实现作图,那R语言呢,自然也是可以的,只不过是另一个包——semPlot,其中的semPaths()函数。
简单介绍一下semPaths()中的主要函数
semPaths(object, what = "paths", whatLabels, layout = "tree", ……)
(1)object:是拟合的对象,就是上文中的“fit”
(2)what:设定图中线的属性, 默认为paths,图中所有的线都为灰色,不显示参数估计值;
semPaths(fit)
若what设定为est、par,则展示估计值,并将线的颜色、粗细、透明度根据参数估计值的大小和显著性做出改变
semPaths(fit,what = "est")
若设置为stand、std,则展示标准参数估计
semPaths(fit,what = "stand")
若设置为eq、cons,则与默认path相同,如果有限制等式,被限制的相同参数会打上相同的颜色;
(3)whatLabels:设定图中线的标签
name、label、path、diagram:将边名作为展示的标签
est、par:参数估计值作为边的标签
stand、std:标准参数估计值作为边的标签
eq、cons:参数号作为标签,0表示固定参数,被限制相同的参数编号相同
no、omit、hide、invisible:隐藏标签
(4)layout:布局
主要有树状和环状两种布局,每种布局又分别有两种风格。
默认为“tree”,树状的第二种风格如下图,比第一种看起来舒服都了
semPaths(fit,layout = "tree2")
第一种环状
semPaths(fit,layout = "circle")
额,都揉成一团了!
试试第二种风格
semPaths(fit,layout = "circle2")
还好一点。如果把Rstudio默认的图片尺寸设计好,作图效果会更棒。
还有一种叫spring的布局,春OR泉?
semPaths(fit,layout = "spring")
看起来跟环状的很像。
详细内容可以阅读以下文献,以及相应的help文档:
[1]Rosseel Y. lavaan: An R package for structural equation modeling[J]. Journal of Statistical Software, 2012, 48(2): 1-36.
https://www.sohu.com/a/386218186_698752
目前,空间计量经济学研究包括以下四个感兴趣的领域:
计量经济模型中空间效应的确定; 合并了空间影响的模型的估计;空间效应存在的说明、检验和诊断;空间预测。
空间计量经济学模型有多种类型(Anselin,et al. 2004)。 首先介绍纳入了空间效应(空间相关和空间差异)、适用于截面数据的空间常系数回归模型,包括空间滞后模型(Spatial Lag Model,SLM)与空间误差模型(Spatial Error Model,SEM)两种,以及空间变系数回归模型——地理加权回归模型(Geographical Weighted Regression,GWR)。适用于时间序列和截面数据合成的空间面板数据计量经济学模型将在以后予以介绍。
空间滞后模型(Spatial Lag Model,SLM)主要是探讨各变量在一地区是否有扩散现象(溢出效应)。其模型表达式为:参数 反映了自变量对因变量的影响,空间滞后因变量 是一内生变量,反映了空间距离对区域行为的作用。区域行为受到文化环境及与空间距离有关的迁移成本的影响,具有很强的地域性(Anselin et al.,1996)。由于SLM模型与时间序列中自回归模型相类似,因此SLM也被称作空间自回归模型(Spatial Autoregressive Model,SAR)。
空间误差模型(Spatial Error Model,SEM)存在于扰动误差项之中的空间依赖作用,度量了邻近地区关于因变量的误差冲击对本地区观察值的影响程度。由于SEM模型与时间序列中的序列相关问题类似,也被称为空间自相关模型(Spatial Autocorrelation Model,SAC)。
估计技术:鉴于空间回归模型由于自变量的内生性,对于上述两种模型的估计如果仍采用OLS,系数估计值会有偏或者无效,需要通过IV、ML或GLS、GMM等其他方法来进行估计。Anselin(1988)建议采用极大似然法估计空间滞后模型(SLM)和空间误差模型(SEM)的参数。
空间自相关检验与SLM、SEM的选择:判断地区间创新产出行为的空间相关性是否存在,以及SLM和SEM那个模型更恰当,一般可通过包括Moran’s I检验、两个拉格朗日乘数(Lagrange Multiplier)形式LMERR、LMLAG及其稳健(Robust)的R-LMERR、R-LMLAG)等形式来实现。由于事先无法根据先验经验推断在SLM和SEM模型中是否存在空间依赖性,有必要构建一种判别准则,以决定哪种空间模型更加符合客观实际。Anselin和Florax(1995)提出了如下判别准则:如果在空间依赖性的检验中发现LMLAG较之LMERR在统计上更加显著,且R-LMLAG显著而R-LMERR不显著,则可以断定适合的模型是空间滞后模型;相反,如果LMERR比LMLAG在统计上更加显著,且R-LMERR显著而R-LMLAG不显著,则可以断定空间误差模型是恰当的模型。
除了拟合优度R2检验以外,常用的检验准则还有:自然对数似然函数值(Log likelihood,LogL)、似然比率(Likelihood Ratio,LR)、赤池信息准则(Akaike information criterion,AIC)、施瓦茨准则(Schwartz criterion,SC)。对数似然值越大,AIC和SC值越小,模型拟合效果越好。这几个指标也用来比较OLS估计的经典线性回归模型和SLM、SEM,似然值的自然对数最大的模型最好。
空间变系数回归模型及估计:就目前国内外的研究来看,大多直接假定横截面单元是同质的,即地区或企业之间没有差异。传统的OLS只是对参数进行“平均”或“全域”估计,不能反映参数在不同空间的空间非稳定性(吴玉鸣,李建霞,2006;苏方林,2007)。 当用横截面数据建立计量经济学模型时,由于这种数据在空间上表现出的复杂性、自相关性和变异性,使得解释变量对被解释变量的影响在不同区域之间可能是不同的,假定区域之间的经济行为在空间上具有异质性的差异可能更加符合现实。空间变系数回归模型(Spatial Varying-Coefficient Regression Model)中的地理加权回归模型(Geographical Weighted Regression,GWR)是一种解决这种问题的有效方法。 、空间计量主要命令
spmat 生成空间权重矩阵
spatwmat 用于定义空间权重矩阵
spatgsa 用于全局空间自相关检验
gsa表示global spatial autocorrelation
spatlsa 进行局部空间自相关检验
lsa表示local spatial autocorrelation
spatcorr 考察空间自相关指标对距离临界值d的依赖性
spatdiag 针对ols回归结果,考察是否存在空间效应
spatreg 估计空间滞后与空间误差模型
空间面板主要命令为:help xsmle
Spatial Autoregressive (SAR) model
xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(sar) [SAR_options]
Spatial Durbin (SDM) model
xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(sdm) [SDM_options]
Spatial Autocorrelation (SAC) model
xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) emat(name) model(sac) [SAC_options]
Spatial Error (SEM) model
xsmle depvar [indepvars] [if] [in] [weight] , emat(name) model(sem) [SEM_options]
Generalized Spatial Panel Random Effects (GSPRE) model
xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(gspre) [emat(name) GSPRE_options]
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)