&ltimg src="https://pic1.zhimg.com/v2-9097acc14cb5f4a901d4e2d1cf883030_b.png" data-rawwidth="308" data-rawheight="260" class="content_image" width="308"&gtf为latent variable, 例如智力、自尊等,在该SEM模型中为predictor。y1,y2,y3为observed variables, 即可直接测量得到的变量,在该SEM模型中为indicators。λ1-3为factor loadings,ε为residual error。
f为latent variable, 例如智力、自尊等,在该SEM模型中为predictor。y1,y2,y3为observed variables, 即可直接测量得到的变量,在该SEM模型中为indicators。λ1-3为factor loadings,ε为residual error。
先前提到SEM是建立在regression model基础上的,该模型可写为如下方程:
y1 = λ1*f + ε1
y2 = λ2*f + ε2
y3 = λ3*f + ε3
即可看到与regression model的联系。
SEM较为广泛应用的是方差/协方差估计法。即可由上述方程写出关于y1,y2,y3的方差/协方差矩阵:(σ为f的variance)
&ltimg src="https://pic3.zhimg.com/v2-4d1ae9e59cf5987bc5ad78ac07b42c7a_b.png" data-rawwidth="453" data-rawheight="93" class="origin_image zh-lightbox-thumb" width="453" data-original="https://pic3.zhimg.com/v2-4d1ae9e59cf5987bc5ad78ac07b42c7a_r.png"&gt而后计算机根据实际矩阵,对factor loadings等parameters进行估计并输出估计矩阵,与实际矩阵差异最小(最理想)时,即输出结果,得到各估计参数和拟合指数。
而后计算机根据实际矩阵,对factor loadings等parameters进行估计并输出估计矩阵,与实际矩阵差异最小(最理想)时,即输出结果,得到各估计参数和拟合指数。
应用较多的模型/方法:MIMIC, multiple group models(比较组间差异), latent growth modeling(比较纵向差异)等。
应用广泛的软件:
1、Mplus。优点:编程简单,结果全面。缺点:收费,贵。学生版是300$。
2、Amos。优点:傻瓜,画图拖数据即可。缺点:模型稍一复杂就很费时。
3、R。下个package即可。优点:兼容性、专业性强。缺点:用的人少,不利于伸手党。
4、LISREL。优点:易入门。缺点:需输入各矩阵,略过时。
其他还有一些软件,不了解。
SEM入门不久,以上为个人理解,求探讨求轻喷。么么哒
结构方程模型 (structural equation modeling,SEM)是一种建立、估计和检验因果关系模型的方法。它可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。
为何要用结构方程模型?
很多社会、心理研究中所涉及到的变量,经常不能准确、直接地测量,这种变量称为 潜变量 ,如工作自主权、工作满意度等。传统的统计分析方法不能妥善处理这些潜变量,而结构方程模型能同时很好地处理这些潜变量及其指标。
矩形是可视变量draw observed,椭圆形是潜变量draw unobserved
B站资源【推荐视频】https://www.bilibili.com/video/BV1PW411E7kz?p=14
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)