分子量越大,分子链缠结导致发生形变需要更大的外力,所以其拉伸强度和抗冲击强度都高。
PE和PE性能差异
1 从耐热角度来分析,聚丙烯的耐热性要高于聚乙烯,通常情况下,聚丙烯的熔融温度比聚乙烯高出约40%-50%,约为160-170℃,所以制品能在100℃以上温度进行消毒灭菌,在不受外力的条件下,150℃也不变形。在生活中我们会发现“5”号聚丙烯餐盒常被用于微波炉中加热食品(微波炉加热的一般温度在100-140℃),而聚乙烯因耐热性差是不可以作为微波炉用塑料的,包括餐盒、保鲜膜。同样,在普通包装膜领域,聚乙烯的包装袋更适合于在90℃以下使用,而聚丙烯包装袋在相对高的温度下使用也是可以的。
2 从刚性、拉伸强度角度分析,聚丙烯主要特点是密度小,力学性能优于聚乙烯,并有很突出的刚性,例如目前聚丙烯已经逐渐展开了与工程塑料(PA/PC)的竞争,广泛运用于电子电器、汽车领域。同时由于聚丙烯拉伸强度高,进而抗弯曲性好,被称为“百折胶”,对折弯曲100万次被弯处不变白,这也为我们辨别聚丙烯制品提供了线索,同时成为制品再回收分类的隐性标志。
3 从耐低温角度来分析,聚丙烯耐低温性弱于聚乙烯,0℃时的抗冲击强度只有20℃时的一半,而聚乙烯脆性温度一般可达-50℃以下;并随相对分子质量的增大,最低可达-140℃。因此如果制品需要在低温环境中使用,还是要尽量选择聚乙烯作为原材料。一般冷藏食品所用托盘都是有聚乙烯原料制作。
4 从耐老化角度来看,聚丙烯的耐老化性要弱于聚乙烯,聚丙烯的结构和聚乙烯类似,但是由于其存在一个甲基构成的侧支链,所以更易在紫外光和热能作用下氧化降解。在日常生活中最常见的容易老化的聚丙烯制品就是编织袋,长时间在太阳下照射编织袋很容易破裂。事实上,聚乙烯耐老化性虽然高于聚丙烯,但是相较于其他原料,它的这种性能也不是非常突出,因为在聚乙烯分子中含有少量双键和醚键,其耐候性不好,日晒、雨淋也会引起老化。
5 从柔韧性角度来分析,聚丙烯虽然强度较高,但是柔韧性较差,技术角度讲也就是抗冲击性能差。所以在用来做膜产品的时候,它的应用领域与聚乙烯的应用领域还是有差别的,聚丙烯薄膜更多的用作表面包装的印刷。而在管材方面,也很少用简单的聚丙烯进行生产,需要用到交联聚丙烯,也就是常见的PPR管。因为普通聚丙烯抗冲击性较差,容易破裂,所以在实际应用在要加入抗冲击改性剂,在保险杆等应用中都要使用助剂来改善抗冲击性。
扩展资料:
甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含量约为95%,其余为无规或间规聚丙烯。
工业产品以等规物为主要成分。聚丙烯也包括丙烯与少量乙烯的共聚物在内。通常为半透明无色固体,无臭无毒。由于结构规整而高度结晶化,故熔点可高达167℃。耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。密度小,是最轻的通用塑料。缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。
共聚物型的PP材料有较低的热变形温度(100℃)、低透明度、低光泽度、低刚性,但是有更强的抗冲击强度,PP的冲击强度随着乙烯含量的增加而增大。PP的维卡软化温度为150℃。由于结晶度较高,这种材料的表面刚度和抗划痕特性很好。PP不存在环境应力开裂问题。
PP的熔体质量流动速率(MFR)通常在1~100。低MFR的PP材料抗冲击特性较好但延展强度较低。对于相同MFR的材料,共聚型的抗冲强度比均聚型的要高。由于结晶,PP的收缩率相当高,一般为1.6~2.0%。
聚乙烯(POLYETHYLENE,PE)是由乙烯聚合而成之聚合物,产品发展至今已有60年左右历史,全球聚乙烯产量居五大泛用树脂之首。
聚乙烯依聚合方法、分子量高低、链结构之不同,分高密度聚乙烯、低密度聚乙烯及线性低密度聚乙烯。
低密度聚乙烯(LOW DENSITY POLYETHYLENE,LDPE)俗称高压聚乙烯,因密度较低,材质最软,主要用在塑胶袋、农业用膜等。
高密度聚乙烯(HIGH DENSITY POLYETHYLENE,HDPE)俗称低压聚乙烯,与LDPE及LLDPE相较,有较高之耐温、耐油性、耐蒸汽渗透性及抗环境应力开裂性,此外电绝缘性和抗冲击性及耐寒性能很好,主要应用于吹塑、注塑等领域。
线型低密度聚乙烯(LINEAR LOW DENSITY POLYETHYLENE,LLDPE),则是乙烯与少量高级 -烯烃在催化剂存在下聚合而成之共聚物。LLDPE外观与LDPE相似,透明性较差些,惟表面光泽好,具有低温韧性、高模量、抗弯曲和耐应力开裂性,低温下抗冲击强度较佳等优点。
LLDPE应用领域几乎已渗透到所有LDPE市场。现阶段LLDPE和HDPE处于生命周期的成长阶段;LDPE则在1980代末逐渐进入发展成熟期,世界上已少有LDPE设备投产。聚乙烯可用挤出、注射、模塑、吹塑和熔纺等方法成型,广泛应用于工业、农业、包装及日常工业中,在中国应用相当广泛,薄膜是其最大的用户,约消耗低密度聚乙烯77%,高密度聚乙烯的18%,另外,注塑制品、电线电缆、中空制品等都在其消费结构中占有较大的比例,在塑料工业中占有举足轻重的地位。
参考资料:百度百科-聚乙烯 百度百科-聚丙烯
管材用聚丙烯x射线衍射图有尖锐的衍射峰(见下图),大部分为晶态聚合。随着结晶条件不同, PP可形成 α、β、γ、δ和拟六方晶等五种晶型结构。管材用聚丙烯的晶型应该是热力学不稳定而动力学准稳定的晶型β晶型,属六方晶系,扫描电子显微镜(SEM)图像表明, β- PP 中片晶由球晶中心成平行集结成束, 然后向外支化生长,或螺旋状地向外生长, 而后支化。
β-PP 球晶之间没有明显的界面, 在相邻球晶边界处,片晶互相交错。β-PP 的断裂面有应力发白现象, 主要由密集的、近似平行的银纹所构成, 银纹交织在一起, 在断裂面附近形成连续的纤维结构。β球晶是由捆束状生长的晶片束组成, 球晶的致密程度比较低, 因此晶片束之间的非晶区就很容易被拉开形成微银纹。银纹带在受力时能吸收大量的冲击能量, 大大提高材料的韧性,但降低其拉伸强度及弯曲弹性模量。
参考文献
《聚丙烯的晶型及常用成核剂》(王东亮1郭绍辉1冯嘉春*2郑 德3)
《聚丙烯管材专用料的鉴别》(程红原,黄 巍,胡孝义)
《聚丙烯的结晶性质》(中国科学院化学研究所 徐振淼)
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)