说实色些邪手镯表面仔细看其实看注色纹材质翡翠合玻璃或染色石英岩类材质
重要支手镯若A货乃千万级物件我曾幸参加某市珠宝展振场宝都达种完美近乎妖程度结何言喻
若疑虑建议送往检测站检测件费用1020元左右土做拉曼光谱总款适合
饲料中添加纳米氧化锌对动物有危害吗纳米材料的兴起
纳米材料的起源可追溯到1959年美国物理学家理查德·费曼(Richard Phillips Feynman)所作的一次题为《在底部还有很大空间》的演讲,他在演讲中提到从单个分子或原子进行组装的自下而上制造物品的构想。1974年,科学家谷口纪男(Norio Taniguchi)最早使用纳米技术一词来描述精密机械加工。1981年,扫面隧道显微镜(STM)的诞生为纳米材料的研究提供了一个可见的原子、分子世界。1984年德国萨尔兰大学Gleiter成功研制出了纳米细粉。1990年,I*公司的科学家Donald Mark Eigler通过扫描探针移动35个氙原子,用他们排列出三个字母,这种原子重排技术的诞生标志着纳米技术取得了重大突破。同年7月,在美国召开了第一届国际纳米科学技术会议,正式宣布纳米材料科学为材料科学的一个新分支。
图1. 用原子排列的三个字母
什么是纳米材料?它有哪些特性?
纳米材料(nanometer materials)是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此在熔点、磁性、光学、导热、化学活性等方面往往表现出不同于该物质在整体状态时所表现的性质,如量子尺寸效应、小尺寸效应、体积效应、表面效应和宏观量子隧道效应等。
纳米氧化锌的应用现状
纳米氧化锌是目前在生产工艺和检测方法方面最为成熟的纳米材料之一,其商业化应用也非常广泛。纳米氧化锌的制备方法包括物理方法(从上到下)和化学方法(自下而上)。目前常见的制备方法包括直接沉淀法、沉淀转化法、溶胶-凝胶法、均匀沉淀法等。根据物理尺寸,可将纳米氧化锌分为3种类型,即空间结构中一维尺寸小于100nm的纳米层(片),二维尺寸小于100nm的纳米管(线、纤维),和三维尺寸小于100nm的纳米粒(球)。研究表明,纳米氧化锌的小尺寸效应和巨大的比表面积使其具有生物学活性,其表面原子比例高,这些表面原子处于严重的缺位状态,其活性极高,很容易与生物大分子的活性基团键合,表现出具有与常规尺寸下物质的本体明显不同的性质。当微粒变小时,微粒己不是一个惰性体,而是一个能给电子和取电子的物体,是具有化学活性物质,生物体所有的氧化还原反应都伴随着氧化还原电位的变化,都可以受到纳米材料得电子和失电子的纳米微粒影响,纳米氧化锌具有广泛的生物学效应。目前,纳米氧化锌主要应用于陶瓷、化妆品、橡胶、服装、涂料、生物医药、饲料等领域。从化妆品安全性评估的应用结果表明,纳米氧化锌是安全的。
为什么有人会觉得在饲料中使用纳米氧化锌会存在安全隐患?
氧化锌作为一种锌源,在饲料行业应用已经很多年了。1989年,丹麦科学家Poulsen首次提出,在断奶仔猪饲料中添加药理剂量的氧化锌可显著降低断奶后的腹泻率。在随后的20多年里,大量的研究论文均证实了这一观点。目前在国内外饲料行业里,往断奶仔猪饲料中添加3kg/t的氧化锌是解决腹泻的普遍做法。随着高剂量氧化锌在断奶仔猪饲料中的使用,其引发的诸多负面效应也日益凸显出来。例如,使用高锌对仔猪后期生长的抑制作用,高锌引发的毛发粗乱的问题,氧化锌中和胃酸的问题,干扰其他营养成分的正常吸收的问题等,这些由高锌引发的负面问题一直困扰着广大从业人员。对氧化锌防腹泻的作用机理深入研究发现,氧化锌主要是在肠道中以氧化锌本身的晶体形式发挥防腹泻功效,其作用靶点主要在肠腔,而锌离子并无明显防腹泻效果。这也解释了为什么同样高剂量的硫酸锌防腹泻的效果并不理想。
那么,氧化锌与锌离子作用差异的根源又在哪里呢?从氧化锌晶体结构来看,它是一种宽禁带化合物半导体材料,具有规整的六角形纤锌矿结构(图2)。各个氧化锌分子通过化学键键合而形成三维立体结构,位于该立体结构内部的锌原子和氧原子由于化学键的作用,性质相对稳定,而位于该结构表面的原子的化学性质则较为活泼。当氧化锌表面原子从外界获得能量大于禁带宽度的光能或热能时,位于次外层价带上的电子(e-)发生跃迁,到达外层的导带上(图3),此时价带上的带正电的空穴(h+)和导带上获得的电子(e-)使得氧化锌的化学性质变的不稳定,极易与外界发生发应。e-和h+能与肠腔中的羟基、水等反应产生·OH、H2O2等物质,这些物质具有极强的氧化活性,可以使大部分有机物化学键断裂,因此能将组成微生物的各种成分分解,从而起到杀菌的作用。此外,h+对肠道细菌有很强的吸附性,可以保护肠上皮免受肠道病原菌对其的黏附破坏。由此,我们可以知道,氧化锌在肠道中发挥功效是通过氧化锌晶体表面原子的电子得失实现的,也就是说位于晶体表面的原子数越多(即氧化锌的比表面积越大),其抗菌效果越好。纳米氧化锌相比于普通氧化锌,具有极大的比表面积,其抗菌活性是普通氧化锌的很多倍。就比表面积大小而言,从大到小依次是纳米粒、纳米管和纳米层,这说明纳米粒形态的抗菌效果最为理想。
图2. 氧化锌晶体结构示意图
图3. 氧化锌晶体电子跃迁示意图
那为什么有人会觉得饲料中添加纳米氧化锌会对动物产生危害呢?这还得从一些基础研究的细胞培养试验说起。陈俊材(2012)研究了不同浓度氧化锌对小肠上皮细胞IEC-6的影响(图4),结果表明低浓度的纳米氧化锌(25μmol /L)在促进肠细胞生长方面能达到高浓度的普通氧化锌(100μmol /L),而高浓度的纳米氧化锌(100μmol /L)会引起部分肠细胞死亡。毛磊(2014)研究了不同浓度纳米氧化锌对受到ETEC(肠毒性大肠杆菌)侵染的肠上皮细胞的影响(图5),结果表明,在一定浓度范围内(6-24μmol /L)纳米氧化锌可以保护肠上皮细胞免受ETEC侵害,且存在剂量效应关系,但是当浓度进一步增大时(48μmol /L),纳米氧化锌会引起肠细胞死亡。综上所述,低剂量的纳米氧化锌同高剂量的普通氧化锌一样,能促进肠上皮细胞生长,保护肠上皮细胞免受ETEC破坏。只有当纳米氧化锌的剂量过大时,才会对肠细胞产生破坏作用。从前文有关氧化锌作用机制的论述中我们可以得知,单位质量的纳米氧化锌比普通氧化锌拥有更大的表面积,即拥有更强的氧化活性,这对细菌有一定的杀灭作用,但量过大时也同样会对机体肠细胞产生危害。另一点需要注意的是,氧化锌(纳米氧化锌)在饲料领域的应用与在其他行业应用最大的不同点在于没有光。氧化锌具有光催化活性,其电子跃迁在光能的作用下更易发生,活性更高,而动物肠道中没有光,氧化锌电子跃迁主要靠热能,效率相对低很多,这说明氧化锌在动物肠道中的作用要温和的多。
图4. 不同浓度氧化锌和纳米氧化锌对小肠上皮细胞IEC-6生长的影响( X50 PH)
图5. 不同浓度的纳米氧化锌对受到ETEC侵染的肠上皮细胞的影响
纳米氧化锌在动物营养领域的应用
有关纳米氧化锌在动物营养领域的研究很多,大量试验证明纳米氧化锌能促进断奶仔猪生长,降低腹泻率。王建辉2003报道, 250、375、500 mg/kg纳米氧化锌均能显著提高仔猪的日增重、料肉比和腹泻率, 添加500 mg/kg纳米氧化锌与3000mg/kg氧化锌的效果相当。喻兵权等报道指出,低剂量的纳米氧化锌(200、400、600mg/kg)均可显著提高仔猪的生产性能,其中,添加400 mg/kg的纳米氧化锌可以达到添加3000 mg/kg的氧化锌在日增重的效果。王之盛在仔猪上的研究发现,50mg/kg纳米氧化锌组采食量和平均末重显著高于100mg/kg普通氧化锌组。
综上所述,当纳米氧化锌以较低剂量添加到饲料中时,能很好的促进断奶仔猪生长,降低腹泻,对动物并没有危害。
你的另一个提问,因为给出了XRD谱,已经回答:
http://zhidao.baidu.com/question/1301835207292159659.html?sort=6&old=1&afterAnswer=1#here。
接下去的工作,你先把每个峰的d值都计算出来、或者利用读谱软件、如同你们现在读到的那两个峰的那样把全部峰都读出来d值,再去X衍射实验室,查找你的样品的标准XRD谱 或依据你的XRD谱的d值、按照d值索引或其它索引去查找DPF数据库粉末衍射卡片所对应的标准晶型物质。
比较你们的XRD谱和标准物质的XRD数据资料,如果一样或较接近,那么标准物质数据库中粉末衍射卡片上已经罗列的数据、资料,你都可以利用。
PDF(或JCPDS或ASTM)卡片各栏的内容:
1区:晶面间距d值区——1a,1b,1c是2θ<90°角区的三条最强谱线的d值(Å),1d是该物相的最大d值。
2区:谱线相对强度I/I1区——最强线定义为100,相对强度值对应于1区的谱线。
3区:衍射实验条件区——射线源(Rad),滤波片(Filler),园筒相机内径(dia.),所能测的最大面间距(cut off),相对强度测量方法(I/I1)——G. C. Diffractometer(盖革计数器衍射仪法);Calibrated Strip(强度标定法)Visual(目测法)等;d corr. Abs?(d值经法吸收校正否?);Ref (参考文献)。
4区:晶体学参数区——晶系(Sys.),空间群(S. G. ,前面是国际符号,后面是熊夫利符号),晶胞数据(a0,b0,c0),轴率(A= a0/b0,C= c0/b0),轴角α、β、γ。单位晶胞内分子数(Z),单位晶胞体积(V),Ref (该区数据参考文献)。
5区:光学及其它物性区——折射率(ε或ω分别为四方、三方、六方晶系平行于或垂直于光轴的折射率,α、β、γ分别是三斜、单斜、正交晶系的三个主折射率),光学符号(Sign),光轴角(zV),D密度,Dx基于XRD谱法测试的密度,熔点(mp),颜色(color)等。
6区:样品来源、制备方法,化学成分相关资料区——S. P. (升华点),D. P.(分解温度),T. P. (转变点)。
7区:物相的化学式或英文名称区——
(1)对于含金及金属的氢化物、硼化物、碳化物、氮化物、氧化物等,在其化学式(常放括号内)后也给出单位晶胞的“化学式分子”数目的数字和代表布拉维空间格子类型的字母。其字母代表的14种布拉维格子为:
B 体心立方 cI, C 简单立方 cP, F 面心立方 cF, H 简单六方 hP,
M 简单单斜 mP,N 底心单斜 mC,O 简单正交 oP, P 体心正交 oI,
Q 底心正交 oC, R 简单菱方 hR,S 面心正交 oF, T 简单四方 tP,
U 体心四方 tI, Z 简单三斜 aP
如,(ZrO2 12M,表示ZrO2属简单单斜(缩写为mP)格子,晶胞中12个ZrO2。
如果两个相仅结构不同而其它特征均同,则在字母前加小写字母以资区分,如(Se)32aM,(Se)32bM。
(2)对于层状结构的物相,在其化学式或化学名称后也给出表示多型的符号。其中的数字部分代表单位晶胞内结构单元层的数目,字母代表晶系:
c立方晶系,H六方晶系,M单斜晶系,O正交晶系,R三方晶系(菱面体),T三方晶系(六方体),Tr三斜晶系,Tt四方晶系。
如果两个多型体的物相、重复层数和晶系均相同,则在字母后用脚标1,2区分。如白云母的2M1物相和2M2物相。
8区:物相的化学式和矿物名或俗名区——
(1)此处显示点式化学式或结构式化学式。点式常乘上适当倍数以便与左边7区的化学式一致。矿物名时加括号表示是人造矿石。矿物名后也可附加如7区所用的表示多层的符号。
(2)右上角用星号等注解所列数据的可靠程度(精度标签QM):
★ 和*——较高可靠性数据;
i ——数据可靠性稍差、已指标化的数据,强度是估计的,准确性不如星号的;
(空白无符号)——数据一般性可靠;
O ——数据取自多相混合物,精度不高;
C ——由结构参数出发计算所得的数据。
这些符号也标注在检索手册中每行索引的最左边,含义相同。
9区:物相所有的衍射数据区——面间距d(Å )、相对强度I/I1和衍射指数hkl。
本区有时出现的注解字母及其含义是:
α1 ——由α1辐射产生的衍射线;
β——由于β线的出现或与β线重迭而强度不确定的线;
b ——宽的、弥散或模糊的衍射线;
d ——双线;
nc ——不能被所归属晶胞解释的线;
ni ——不能用所给晶胞参数指标化的线;
np ——不能被所给空间群允许的线;
tr ——痕迹衍射线;
+ ——可能的外加指数。
10区(表头):卡片号码——(卡片组号)-(同组中卡片序号),如8-625。若衍射数据多,占用2张卡片,则第2张同样的号码后续“a”,如8-625a。有的物相给出两张卡片,第一张给出的衍射数据是峰值相对强度,第二张给出的是积分强度,这时第二张卡号码后会缀以“A”,如8-625A。
现在,有更新的仪器解析辅助软件可利用。
祝你顺利!进步!成功!
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)