①质子交换膜 质子交换膜(PEM)是质子交换膜燃料电池的核心部件,是一种厚度仅为50~180um的薄膜片,其微观结构非常复杂。它为质子传递提供通道,同时作为隔膜将阳极的燃料与阴极的氧化剂隔开,其性能好坏直接影响电池的性能和寿命。它与一般化学电源中使用的隔膜有很大不同,它不只是一种隔离阴阳极反应气体的隔膜材料,还是电解质和电极活性物质(电催化剂)的基底,即兼有隔膜和电解质的作用;另外,PEM还是一种选择透过性膜,在一定的温度和湿度条件下具有可选择的透过性,在质子交换膜的高分子结构中,含有多种离子基团,它只容许氢离子(氢质子)透过,而不容许氢分子及其他离子透过。
亚南膜电极参与了国家863计划《燃料电池应急备用电源中试规模的制造及运行》项目的研究开发,项目于2016年顺利通过国家科技部验收,
(a) PEMFC的基本结构
(b)质子交换膜燃料电池组的外观
图1 质子交换膜燃料电池的基本结构
质子交换膜燃料电池对于质子交换膜的要求非常高,质子交换膜必须具有良好的质子电导率、良好的热和化学稳定性、较低的气体渗透率,还要有适度的含水率,对电池工作过程中的氧化、还原和水解具有稳定性,并同时具有足够高的机械强度和结构强度,以及膜表面适合与催化剂结合的性能。
质子交换膜的物理、化学性质对燃料电池的性能具有极大的影响,对性能造成影响的质子交换膜的物理性质主要有:膜的厚度和单位面积质量、膜的抗拉强度、膜的含水率和膜的溶胀度。质子交换膜的电化学性质主要表现在膜的导电性能(电阻率、面电阻,电导率)和选择通过性能(透过性参数P)上。
a.膜的厚度和单位面积质量。膜的厚度和单位面积质量越低,膜的电阻越小,电池的工作电压和能量密度越大;但是如果厚度过低,会影响膜的抗控强度,甚至引起氢气的泄漏而导致电池的失效。
b.膜的抗拉强度。膜的抗拉强度与膜的厚度成正比,也与环境有关,通常在保证膜的抗拉强度的前提下,应尽量减小膜的厚度。
c.膜的含水率。每克干膜的含水量称为膜的含水率,可用百分数表示。含水率对膜电解质的质子传递能力影响很大,还会影响到氧在膜中的溶解扩散。含水率越高,质子扩散因子和渗透率也越大,膜电阻随之下降,但同时膜的强度也有所下降。
d.膜的溶胀度。膜的溶胀度是指离子膜在给定的溶液中浸泡后,离子膜的面积或体积变化的百分率,即浸液后的体积(面积)和干膜的体积(面积)的差值与干膜的体积(面积)的百分比。膜的溶胀度表示反应中膜的变形程度。溶胀度高,在水合和脱水时会由于膜的溶胀而造成电极的变形和质子交换膜局部应力的增大,从而造成电池性能的下降。
质子交换膜燃料电池曾采用酚醛树脂磺酸型膜、聚苯乙烯磺酸型膜、聚三氟苯乙烯磺酸型膜和全氟磺酸型膜。研究表明,全氟磺酸型膜最适合作为质子交换膜燃料电池的固体电解质。虽然全氟磺酸膜具有良好的性能,但由于膜的结构、工艺和生产批量等问题的存在,到目前为止,质子交换膜的成本还非常高,因此需要寻找高性能低成本的替代膜。一个选择是使用全氟磺酸材料与聚四氟乙烯(PTFE)的复合膜,其中PTFE是起强化作用的微孔介质,而全氟磺酸材料则在微孔中形成质子传递通道。这种复合膜能够改善膜的机械强度和稳定性,而且膜可以做得很薄,减少了全氟磺酸材料的用量,降低了膜的成本,同时较薄的膜还改善了膜中水的分布,提高了膜的质子传导性能。另一个选择是寻找新的低氟或非氟膜材料。此外,还可以采用无机酸与树脂的共混膜,不仅可以提高膜的电导率,还可以提高膜的工作温度。
②电催化剂 催化剂是质子交换膜燃料电池中的关键性技术焦点所在。为了加快电化学反应速度,气体扩散电极上都含有一定量的催化剂。由于燃料电池的低运行温度,以及电解质酸性的本质,故应用的催化剂层需要贵金属。PEMFC电催化剂按作用部位可分为阴极催化剂和阳极催化剂两类。质子交换膜燃料电池的阳极反应为氢的氧化反应,阴极为氧的还原反应。因氧的催化还原作用比氢的催化氧化作用更为困难,所以阴极是最关键的电极。
对催化剂的要求是足够的催化活性和稳定性,阳极催化剂还应具有抗CO中毒的能力,对于使用烃类燃料重整的质子交换膜燃料电池系统,阳极催化剂系统尤其应注意这个问题。PEMFC电催化剂按照使用金属可分为铂系和非铂系电催化剂两类。由于质子交换膜燃料电池的工作温度低于100℃,目前只有贵金属催化剂对氢气氧化和氧气还原反应表现出了足够的催化活性.现在所用的最有效催化剂是铂或铂合金催化剂,它对氢气氧化和氧气还原都具有非常好的催化能力,且可以长期稳定工作。由于这种电池是在低温条件下工作的,因此,提高催化剂的活性,防止电极催化剂中毒很重要。
以铂或铂合金作为催化剂的主要问题是成本太高,由于Pt的价格高、资源匮乏,使得质子交换膜燃料电池的成本居高不下,限制了大规模的应用,需要进一步降低铂的载量。一种方法是寻找新的价格较低的非铂,非贵金属催化剂;另一种方法是改进电极结构,有效利用铂催化剂,提高Pt的利用率,减少单位面积的使用量。
以铂或铂合金作为催化剂的另一个主要问题是其毒化问题。铂催化剂因极富活性而提供了优异的性能。该催化剂对一氧化碳和硫的生成物与氧相比有较高的亲和力,这种毒化效应强烈地制约了催化剂的高度活性,并阻碍了扩展到其中的氢或氧.使得电极反应不能发生,燃料电池性能递减。若氢由重整装置提供,则气流中将含有一些一氧化碳,或吸入的空气因来自被污染城市而含有一氧化碳,这都会造成毒化问题的产生。由一氧化碳引起的毒化是可逆的,但它增加了成本,且各个燃料电池需要单独处理。
③电极 质子交换膜燃料电池的电极是一种典型的多孔气体扩散电极,一般由气体扩散层和催化层构成。扩散层是导电材料制成的多孔合成物,起着支撑催化层、收集电流的作用,并为电化学反应提供电子通道、气体通道和排水通道。催化层是进行电化学反应的区域,是电极的核心部分,其内部结构粗糙多孔,有足够的表面积以促进氢气和氧气的电化学反应。电极制作的好坏对电池的性能有重要影响。
扩散层一般以多孔炭纸或炭布为基底,并经聚四氟乙烯(PTFE)和炭黑处理后构成的,厚度约为0.2~0.3mm。在扩散层中,被PTFE覆盖的大孔是憎水孔,未被PTFE覆盖的小孔是亲水孔。反应气体通过憎水孔传递,而产物水则通过亲水孔排出。制备扩散层的关键是如何实现憎水孔和亲水孔的合理分布。一个好的气体扩散电极应同时具备适度的亲水性和憎水性,以保证催化剂发生作用的最佳湿化环境,同时让反应生成的水及时排除,以免电极被淹。
催化层可以分为常规憎水催化层、薄层亲水催化层和超薄催化层。早期的催化层是常规的憎水催化层,厚度超过50um,主要是将铂黑或碳载铂催化剂和PTFE微粒混合后,经丝网印刷、涂布和喷涂等方法涂覆到扩散层上并经热处理制得.催化层中的PTFE提供了气体扩散通道,而催化剂则为电子和水的传递提供了通道。但是这种催化层质子传导能力较差,性能不高。后来,为了改进这种催化层的质子传导能力并增加催化剂、反应气体和质子交换膜三相界面的面积,又研制了薄层亲水催化层和超薄催化层。
看完这篇文章,你就知道为何那么多企业都要造智能网联汽车和新能源车了!2016-12-01
《中国制造2025》提出“节能与新能源汽车”作为重点发展领域,明确了“继续支持电动汽车、燃料电池汽车发展,掌握汽车低碳化、信息化、智能化核心技术,提升动力电池、驱动电机、高效内燃机、先进变速器、轻量化材料、智能控制等核心技术的工程化和产业化能力,形成从关键零部件到整车的完成工业体系和创新体系,推动自主品牌节能与新能源汽车与国际先进水平接轨。”的发展战略,为我国节能与新能源汽车产业发展指明了方向。
一、汽车产业是制造强国战略的必然选择
从制造强国看,汽车产业以其在国民经济中的重要地位和对经济增长的重要贡献被列为国家的战略性竞争产业。以汽车为代表的第二次工业革命延续了百余年,欧美日等制造强国也无一不是汽车强国。当前,以第三次工业革命为背景,全球技术创新与经济复苏日趋活跃,汽车产业又是第三次工业革命涉及的数字化、网络化、智能化以及新能源、新材料、新装备等技术创新最全面、大规模的载体与平台,因此再次成为工业革命和工业化水平的代表性产业。
无论是从创新驱动发展,还是国民经济的可持续健康发展,具有大规模效应与产业关联带动作用的汽车产业都应是战略必争产业。中国汽车工业增加值占GDP的比重仅为1.53%,与汽车强国4%的水平存在较大差距,其原因就是我们在产业链的低端,是制造而非创造,因此汽车工业做强将为国民经济发展发挥更重要的作用。同时,汽车工业极强的产业关联与带动性,也是中国制造业技术创新水平的集中体现。
二、汽车产业发展面临的主要问题与制约因素
(一)对汽车产业在制造强国建设和经济转型升级中的重要战略地位认识不足,清晰系统持续的产业发展战略和顶层设计缺失。近年来我国汽车产业发展迅猛,但汽车产业发展战略依旧不清晰,缺乏系统完整的汽车强国战略。汽车产业政策的不持续性,导致国内汽车市场波动大,企业产能要么难以适应,要么出现闲置,加剧了国内市场的低水平竞争,产业大而不强。
(二)关键核心技术受制于人,自主创新能力偏弱。目前,我国主要汽车集团在乘用车平台技术、发动机系统、新能源电池等领域仍未完全掌握关键技术,尚未形成完整工业体系及能力。
(三)缺乏基础研究共性技术平台与创新体系支撑。目前,我国初步建立官产学研相结合的创新体系,但是由于产业组织结构、企业规模及治理模式等多种因素制约,对基础共性技术的研究仍偏弱,另外,目前尚无跨行业、跨领域、跨技术的协调管理机制。
(四)传统汽车产业整体技术水平和研发能力薄弱,供应链体系不完整,制约战略新兴产业的快速发展。由于我国传统汽车及其相关产业的创新能力、研发投入强度相对薄弱,相关产业链尚不完善,部分关键零部件原材料和关键元器件依赖国外,制约了节能与新能源汽车的快速发展。
(五)商业运营模式、人文等软环境发展滞后,自主品牌培育仍需时日。目前,汽车产业主导的商业模式仍未确定,汽车文化环境建设滞后,同时国产汽车技术水平、产品质量、性能等方面仍与国际先进水平存在差距,缺乏核心竞争力。
三、节能与新能源汽车是汽车制造强国的必由之路
随着全球汽车保有量的迅速增长,面临能源、环境和安全的压力日益加大。从可持续发展看,汽车产业必须解决能源、污染、安全和拥堵全球公认的四大汽车公害,低碳化、信息化与智能化汽车已被认为是最终解决方案。
美日欧等国家都已提出了汽车低碳化、电动化、智能化的发展目标,并通过加强技术创新、跨产业协同融合等规划,加快推动实现汽车产业在新一代信息技术、清洁能源技术发展大背景下的转型和变革。
在低碳化方面,主要汽车发达国家基本都提出了乘用车燃料消耗量达到2020年5L/100km,2025年4L/100km左右的目标。
在电动化方面,在各国政府的积极推动和主要汽车制造商努力下,基于动力电池技术进步和成本降低,全球汽车电动化进程不断加快。2014年全球电动汽车销量达30万辆。据国际能源机构预测,到2030年电动汽车将占世界汽车销量的30%。
在智能化方面,世界先进国家已将汽车产业的发展蓝图确定为要实现基于网络的设计、制造、服务一体化的数字模型。如,德国工业4.0清晰定义了基于互联网的智能汽车、设施及制造服务的信息物理融合系统,以及明确了从汽车机电一体化到智能驾驶信息物理融合推进时间表。欧盟计划2050年形成一体化智能和互通互联汽车的交通区,互联汽车将于2015年上市。
2014年中国汽车销量达2439万辆,截至2014年底,汽车保有量1.45亿辆。近年来,中国石油进口依存度已接近60%,交通领域石油消费占比接近50%,其中近80%被汽车消耗。同时,城市道路交通矛盾日益突出,汽车成为环境污染排放的重要来源,由此可见,汽车产业肩负改善交通、保护环境、节约能源等的重要责任,中国汽车产业发展节能与新能源汽车,实现低碳化、电动化、智能化发展刻不容缓。从中国汽车产业的现状看,依据汽车产业的现有基础、在国家战略性新兴产业与节能减排法规的促进下,经过“十三五”期间的扎实推进与重点突破,有可能在“十四五”形成低碳化、信息化、智能化的节能与新能源汽车优势领域。
四、推动节能与新能源汽车产业发展的战略目标
(一)纯电动汽车和插电式混合动力汽车
1. 产业化取得重大进展。到2020年,自主品牌纯电动和插电式新能源汽车年销量突破100万辆;到2025年,与国际先进水平同步的新能源汽车年销量300万辆。
2. 产业竞争力显著提升。到2020年,打造明星车型,进入全球销量排名前10,新能源客车实现批量出口;到2025年,2家整车企业销量进入世界前10。海外销售占总销量的10%。
3. 配套能力明显增强。到2020年,动力电池、驱动电机等关键系统达到国际先进水平,在国内市场占有率80%;到2025年,动力电池、驱动电机等关键系统实现批量出口。
4. 逐步实现车辆信息化、智能化。到2020年,实现车-车、车-设施之间信息化;到2025年,智能网联汽车实现区域试点。
(二)燃料电池汽车
1.关键材料、零部件逐步国产化。到2020年,实现燃料电池关键材料批量化生产的质量控制和保证能力;到2025年,实现高品质关键材料、零部件实现国产化和批量供应。
2.燃料电池堆和整车性能逐步提升。到2020年,燃料电池堆寿命达到5000小时,功率密度超过2.5千瓦/升,整车耐久性到达15万公里,续驶里程500公里,加氢时间3分钟,冷启动温度低于-30℃;到2025年,燃料电池堆系统可靠性和经济性大幅提高,和传统汽车、电动汽车相比具有一定的市场竞争力,实现批量生产和市场化推广。
3.燃料电池汽车运行规模进一步扩大。到2020年,生产1000辆燃料电池汽车并进行示范运行;到2025年,制氢、加氢等配套基础设施基本完善,燃料电池汽车实现区域小规模运行。
(三)节能汽车
到2020年,乘用车(含新能源乘用车)新车整体油耗降至5升/100公里,2025年,降至4升/100公里左右。到2020年,商用车新车油耗接近国际先进水平,到2025年,达到国际先进水平。
(四)智能网联汽车
到2020年,掌握智能辅助驾驶总体技术及各项关键技术,初步建立智能网联汽车自主研发体系及生产配套体系。到2025年,掌握自动驾驶总体技术及各项关键技术,建立较完善的智能网联汽车自主研发体系、生产配套体系及产业群,基本完成汽车产业转型升级。
五、推动节能与新能源汽车产业发展的重点领域
(一)纯电动汽车和插电式混合动力汽车
纯电动汽车是指其动力系统主要由动力蓄电池和驱动电机组成,从电网获得电力,并通过动力蓄电池向驱动电机提供电能驱动的汽车。 插电式混合动力汽车是一种能从外部电源对其能量存储装置进行充电的混合动力汽车,具有纯电行驶模式。围绕纯电动汽车和插电式混合动力汽车,将主要在以下重点领域开展工作:
1. 研发一体化纯电动平台。开发高集成度的电动一体化底盘产品技术,高度集成电池系统、高效高集成电驱动总成、主动悬架系统、线控转向/制动系统、集成控制系统,实现整车操纵稳定性、电池组安全防护、底盘系统的轻量化的研究应用。
2. 高性能插电式混合动力总成和增程式器发动机。开发高性能插电式混合动力总成,开展离合器、电机及变速箱集成开发、混合动力系统控制和集成技术开发。重点掌握新型结构发动机、高效高密度发电机的开发,研究高效发动机与发电机的集成的核心关键技术,形成增程器系统的自主开发和配套能力。
3. 下一代锂离子电动力电池和新体系动力电池,高功率密度、高可靠性电驱动系统的研发和产业化,构建自主可控的产业链。建立和健全富锂层氧化物正极材料/硅基合金体系锂离子电池、全固态锂离子电池、金属空气电池、锂硫电池等下一代锂离动力电池和新体系动力电池的产业链,并推动高功率密度、高效化、轻量化、小型化的驱动电机的研发。
4. 基于大数据系统的智能化汽车产业链建设,突破车联网应用、信息融合、车辆集成控制、信息安全等关键技术。建立基于大数据系统的智能网联汽车自主研发体系和生产配套体系,基本完成汽车产业转型升级突破环境感知与多传感器信息融合技术、信息支撑平台与协同通信技术、智能决策及智能线控技术、智能网联汽车的车辆集成技术、智能网联汽车信息安全技术等关键技术。
(二)燃料电池汽车
燃料电池汽车是指利用氢气和空气中的氧在催化剂作用下,在燃料电池中电化学反应产生的电能作为主要动力源的汽车。围绕燃料电池汽车,将主要在以下重点领域开展工作:
1.燃料电池催化剂、质子交换膜、碳纸、膜电极组件、双极板等关键材料批量生产能力建设和质量控制技术研究。开展高功率密度电堆用的低Pt催化剂、复合膜、扩散层(碳纸、碳布)、高性能及耐受性质子交换膜材料、高可靠性及低铂担量的膜电极(MEA)、高性能及高可靠性的金属双极板的开发和质量控制技术的研究,形成批量生产能力。
2.燃料电池堆系统可靠性提升和工程化水平的研究。提高催化剂及其载体的抗氧化能力,质子膜的机械和化学稳定性;改进燃料电池材料制备工艺和质量控制,提高电堆设计水平;验证电堆运行寿命,解决车辆运行条件下的电堆均一性问题;结合车辆动态运行特征,对系统级运行与操作条件做匹配优化;实现系统级寿命验证与参数表征,提高产品级寿命;提高系统零部件的可靠性,开展系统可靠性分析与设计改进。
3.汽车、备用电源、深海潜器等燃料电池通用化技术研究。开展燃料电池通用化技术研究,2020年,实现关键技术攻关,研发出新一代的金属双极板电堆,2025年,完成商业化产品全产业链的建设。
4.燃料电池汽车整车可靠性提升和成本控制技术。开展燃料电池发动机系统集成与优化,实现燃料电池整车可靠性提高;推动燃料电池关键材料(膜、炭纸、催化剂、MEA、双极板等)及系统关键部件(空压机、膜增湿器、电磁阀、车载70MPa氢瓶等)国产化,开发超低铂,非铂催化剂,降低材料成本,促进燃料电池系统产品化和工程化,实现燃料电池系统设计模块化,并改进生产制造工艺。
(三)节能汽车
节能汽车是指以内燃机为主要动力系统,综合工况燃料消耗量优于下一阶段目标值的汽车,主要涵盖先进汽柴油汽车、替代燃料汽车、混合动力汽车等。围绕节能汽车,将主要在以下重点领域开展工作:
1.整车轻量化技术、低滚阻轮胎,车身外形优化设计。推广应用铝合金、镁合金、高强度钢、塑料及非金属复合材料等整车轻量化材料和车身轻量化、底盘轻量化、动力系统、核心部件轻量化设计。形成低滚阻轮胎开发技术、节能、安全、舒适等性能控制技术、低风阻整车开发技术、整车智能热管理技术等整车集成技术的开发和产业化能力。
2.柴油机高压共轨、汽油机缸内直喷、均质燃烧和涡轮增压等高效率发动机,提高热动能量转化效率。促进柴油机高压共轨技术的自主开发,推动柴油发动机在乘用车上的应用。推动高效汽油发动机的自主开发和产业化,提升热动能量转化效率,降低能耗。促进汽油机缸内直喷、均值燃料、废气再循环+高压缩比、可变气门正时(VVT)、可变气门升程(VVL)、废气涡轮增压和机械增压技术等高效燃烧技术的开发与自主供应;低摩擦轴承、低粘度机油、激光珩磨等低摩擦新产品和新工艺的开发;形成电子节温器、电子水泵、智能发电机等高效附件的开发与商品化能力。
3.商用车自动控制机械变速器、高效变速器、节能空调、起停技术和制动能量回收技术的研究优化。实现双离合器总成、电液耦合液压阀体、液力变矩器、高压静音油泵核心技术突破与国产化。促进机械变速器自动控制、变速器多档化、手动变速器平台化、提升变速器效率,与国际趋势接轨。研究优化节能空调技术、启停技术、制动能量回收技术和零部件的开发,实现国产化批量供应。
(四)智能网联汽车
智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,具备复杂环境感知、智能化决策、自动化控制功能,使车辆与外部节点间实现信息共享与控制协同,实现“零伤亡、零拥堵”,达到安全、高效、节能行驶的下一代汽车。围绕智能网联汽车,将主要在以下重点领域开展工作:
1、基于车联网的车载智能信息服务系统。在现有的Telmatics系统基础上,为乘客的安全便利出行提供全方位的信息服务。
2、公交及营运车辆网联化信息管理系统。全面升级及优化公交、出租及各种运营车辆信息服务及管理系统,为专业驾驶员的安全、绿色与高效出行提供全方位信息服务,同时为营运管理与交通管理部门提供系统的监控、调度和管理服务。
3、装备智能辅助驾驶系统的智能网联汽车。包括车道偏离预警系统、盲区预警系统、驾驶员疲劳预警系统、自适应巡航控制系统及预测式紧急刹车系统,能提供至少两种可共同运行的主要控制功能,如自适应巡航控制(ACC)与车道偏离预警的结合,以减轻驾驶人负担。减少交通事故30%以上,减少交通死亡人数10%以上。
4、装备自动驾驶系统的智能网联汽车。包括结构化道路下和各种道路下的自动驾驶系统,可执行完整的安全关键驾驶功能,在行驶全程中检测道路状况,实现可完全自动驾驶。无人驾驶最高安全车速达到120km/h,综合能耗较常规汽车降低10%以上,减少排放20%以上。
六、推动节能与新能源汽车产业发展的主要路径
(一)加强对关键核心技术和零部件研发和产业化支持。掌握电池、电机、电控核心技术,加大对燃料电池关键材料和零部件的研发支持和产业链建设,以及促进传统能源动力系统应用新一代增压直喷、混合动力、低摩擦等技术的开发和产业化,形成完整的节能与新能源汽车产业配套体系,推动插电式混合动力、纯电动及燃料电池汽车工程化和产业化水平,促进节能产品的应用。
(二)搭建产业共性技术平台,加强优势技术的共享应用以及通用技术与部件的联合批量供应。发挥产业创新联盟的作用,加强统筹协调,开展关键共性技术研发与工程化应用,采取多种形式的商业化合作模式,创新供应体系,建立行业共享的汽车产品开发数据库,全面提升我国汽车工业自出开发能力和整体技术水平。
(三)完善标准法规体系,提升检测评价能力,加强产品事中事后监管。进一步完善新能源汽车准入管理制度和汽车产品公告制度,严格执行准入条件、认证要求;加强新能源汽车安全标准的研究与制定,加快研究制定新能源汽车以及充电、加注技术和设施的相关标准;制定分阶段的乘用车、轻型商用车和重型商用车燃料消耗量目标值标准,实施乘用车企业平均燃料消耗量管理和重型商用车燃料消耗量标示制度。
(四)完善政策保障体系。通过税收、补贴等鼓励政策,加强混合动力系统的规模应用;推动新能源汽车的推广应用;完善充电基础设施保障体系并加快制氢、储氢、加氢等配套体系建设;加快燃料电池在交通、通讯、能源、航空、船舶等领域的应用,促进产业协同发展。
(五)加强国际合作,强化国际化布局。加强在新技术、新材料、关键零部件等方面的合作开发,加强国际化产业布局。积极参与制定国际标准法规的制定,为我国节能与新能源汽车走向国际奠定基础。
前瞻产业研究院《中国电动汽车行业市场需求预测与投资战略规划分析报告》
上世纪70年代全球三次石油危机爆发后,各跨国汽车公司先后开始研发各种类型的电动汽车。我国经过“八五”、“九五”、“十五”三个五年计划,在研发电动汽车的专项上投入了大量的人力、物力和财力,并取得了一系列科研成果,但是,迄今为止,这些科研成果真正能转化为产品,并实现产业化生产的项目并不多。国外大汽车公司投入远比我国更多的资金和人力,已投入批量生产的电动汽车产品也寥寥无几。随着全球能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,各国政府及汽车企业普遍认识到节能和减排是未来汽车技术发展的主攻方向,发展电动汽车将是解决这二个技术难点的最佳途径。下面将为您介绍电动汽车的现状与发展趋势。
一、电动汽车的现状
现代电动汽车一般可分为三类:纯电动汽车(BEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)。但是近几年在传统混合动力汽车的基础上,又派生出一种插电式(Plug-In)混合动力汽车,简称PHEV。本文将电动汽车技术研发的若干问题和趋势,作简要的介绍和评述。
1、纯电动汽车(BEV)
纯电动汽车是指完全由动力蓄电池提供电力驱动的电动汽车,虽然它已有134年的悠久历史,但一直仅限于某些特定范围内应用,市场较小。主要原因是由于各种类别的蓄电池,普遍存在价格高、寿命短、外形尺寸和重量大、充电时间长等严重缺点。目前采用的铅酸电池、镍氢电池和锂离子电池,它们已达到的实际性能指标和市场平均价格,如表1所示。根据实际装车时的循环寿命和市场价格,可估算出电动汽车从各种动力电池上每取出1kWh电能所必须付出的费用。计算时,假设电池最高可充电荷电状态(SOC)为0.9,放电SOC为0.2,即实际可用的电池容量仅占总容量的70%由电网供电价为0.5元/kWh,电池的平均充放电效率为0.75。
从表1的粗略计算中可知,虽然从电网取电仅需
0.5元/kWh,但充入电池,再从电池取出,铅酸电池每提供1kWh电能,价格为3.05元左右,其中2.38元为电池折旧费,0.67元为电网供电费,而从镍氢电池中每提供1kWh电能,费用为9.6元,锂离子电池为10.2元,即后二种先进电池供电成本是铅酸电池的三倍多。
目前国内市场上用柴油机发电,价格大致为3元/kWh,若用汽油机发电,供电价格估计为4元/kWh,即从铅酸电机提供电能的价格大致和柴油机发电价格相等,仅仅从取得能量的成本来考虑,采用铅酸电池比汽油机驱动有一定价格优势,但是由于它太过笨重,充电时间又长,因此只被广泛用于车速小于50km/h
的各种场地车、高尔夫球车、垃圾车、叉车以及电动自行车上。实践证实铅酸电池在这一低端产品市场上有较强的竞争力和实用性。
镍氢电池的主要优点是相对寿命较长,但是由于镍金属占其成本的60%,导致镍氢电池价格居高不下。锂离子电池技术发展很快,近10年来,其比能量由
100Wh/kg增加到180Wh/kg,比功率可达2000W/kg,循环寿命达1000次以上,工作温度范围达-40~55℃。美国USABC在
2002年制定的锂离子电池技术发展目标如表2所示。
近年由于磷酸铁锂离子电池的研发有重大突破,又大大提高了电池的安全性。目前已有许多发达国家将锂离子电池作为电动汽车用动力电池的主攻方向。我国拥有锂资源优势,锂电池产量到2004年已占全球市场的37.1%,预计到2015年以后,锂离子电池的性/价比有望达到可以和铅酸电池竞争的水平,而成为未来电动汽车的主要动力电池。
图1示出了国内外各种纯电动车辆数量/性能和价格/性能曲线,以电动自行车为代表的低性能车辆,由于其成本低廉,仅我国在2006年已达到年产2000万辆,美国通用汽车公司生产的冲击1号电动跑车,虽然已达到了很高的动力性,但是由于售价高昂,仅生产了区区50辆,由于没有市场而不得不停产。性能较低的场地车,在我国年产达7000~8000辆左右天津清源电动车公司生产的微型电动车,最高车速仅50km/h,年产也可以达千辆以上,这可能是目前市场所能接受的纯电动车辆性能的上限。上述所有电动车辆均采用铅酸电池为动力。随着高性能锂离子电池的性/价比不断提升,未来5~10年内,市场上可能会出现最高车速≥100km/h,续驶里程≥250km的高性能纯电动汽车。
2、混合动力电动汽车(HEV)
由于完全由动力蓄电池驱动的纯电动汽车,其性能/价格比长期以来都远远低于传统的内燃机汽车,难于与传统汽车相竞争,上个世纪90年代以来各大汽车公司都着手开发混合动力汽车。日本丰田公司在1997年率先向市场推出“先驱者”(Prius)混合动力汽车,并在日本、美国和欧洲各国市场上均获得较大成功,累计产销量已超过60万辆。随后日本本田、美国福特、通用和欧洲一些大公司,也纷纷向市场推出各种类型的混合动力汽车。
2.1 研制全混合电动汽车的必要性
混合动力电动汽车是指具备两个以上动力源、而其中有一个可以释放电能的汽车。混合动力汽车按混合方式不同,可分为串联式、并联式和混联式三种按混合度(电机功率与内燃机功率之比)的不同,又可分为微混合、轻度混合和全混合三种。其中外挂式皮带驱动起动/发电(BSG)式是微混合动力汽车的典型结构,其电机功率一般仅2~3kW,依赖发动机的停车断油功能,可节燃油5~7%在发动机曲轴后端加装一个电动/发电型盘式电机(ISG)是轻度混合动力汽车的典型结构具有纯电力驱动功能的可作为全混合或混联式混合动力汽车的典型。丰田公司的Prius轿车即属于这类全混合汽车。目前我国若干汽车企业研制的混合动力汽车,大多采用ISG轻度混合或BSG微混合方案,主要是考虑这二种方案的技术难度较小,生产成本也较低。但是根据研究表明,混合动力汽车的节油率几乎与汽车功率的混合度和汽车的生产成正比上升(如图2)。因此,从长远来看,研制全混合电动汽车是一种必然趋势。
2.2 研发及市场情况
下面分别介绍混合动力乘用车和混合动力公交车的研发及市场情况。
以节油率最佳的丰田Prius汽车为例,在我国实测它与丰田花冠(Corrolla)油耗在不同工况下的对比数据如表3所示。各种工况下的平均节油率为39.6%,平均百公里可节油3.07L。
以97号汽油价格为5元/L计算,每百公里可节省油费15.35元,行驶20万km也仅省油费3.07万元,显然还不足以抵消购置混合动力汽车所增加的费用。据中国汽车工业协会统计,2006年一汽丰田普锐斯(Prius)销量仅为2152辆,占全国乘用车总销量的0.04%。考虑到我国用户对汽车售价的敏感性,这一销售业绩并不令人惊奇,可以认为在近期,如果没有政府的大力支持,混合动力乘用车在我国不会有很大的市场。
2.3 城市公交车的使用特点
在我国,城市公交车与私人乘用车的情况有很大的不同,具体归纳为以下三点:
(1)据统计我国城镇居民日常出门有70%是首选乘坐公交车,我国大部分城市政府都奉行公交车优先的交通政策,我国公交车的年产量和保有量都居世界第一
(2)我国城市公交车大多由市政府补助公交企业采购,公交车是否符合节油减排要求,将是政府需要考虑的一个重要采购原则
(3)从技术角度来分析,在城市工况下,公交车频繁起步、加速、制动和停车,要额外消耗许多燃油。表4列出了在国外四种典型城市工况下,汽车制动消耗能量(油耗)所占比例,其算数平均值达47.1%。即有近一半的燃油是被汽车频繁制动所消耗的,这就为混合动力公交车的节油减排留下了相当大的空间。
正是考虑到以上几个特点,我国至少有7~8家汽车企业将研发、生产混合动力公交车作为研发工作的重点。经过近几年的开发,虽然已取得了一系列重大成果,但公交车的节油率并未达到预计的要求,一辆总重15.5t,长11m的混合动力公交车,实际油耗大多为33~35L,平均34L/100km,若传统
11m公交车的平均油耗为40L/100km,则节油率仅15%。
2.4节油率难以进一步提高的原因
分析节油率难以进一步提高的原因主要有二个:
(1)汽车的制动过程十分短暂,一半不超过10s,在短短的几秒内,电机要求发出很大的电流,才能有效回收制动能量,但是电池的充电倍率只有放电倍率的一半,因此电池不能接受大电流充电。理论上汽车有50~60%的制动能量可回收,实际回收的制动能量<20%,最简单的改进办法是加大动力电池容量,例如至少加大容量一倍,回收的制动能量可由20%增加到40%。但这将大大增加整车成本和汽车自重,经济上可能是得不偿失。<
div="">
(2)混合动力公交车若采用停车断油,甚至滑行时即断油,可节油10%左右(4L/100km),实际上国产柴油机没有专门为混合动力汽车设计,一般不允许频繁的停车断油,否则供油系和废气增压器都可能损坏,严重影响柴油机寿命。其次,停车断油就必须装有电动转向油泵、电动空压机和电动空调系统,这又会大大增加整车成本和重量,二相权衡,不一定合算,所以近期大多未实现停车断油功能。因此,目前HEV的开发重点集中在节油降耗的工作上,针对以上问题,科研工作者提出了不同的解决方案,如利用超级电容器的功率密度达铅酸电池的10倍,具有快速吸收大电流充电的优异特性,在混合动力汽车制动时可以快速吸收能量,大大提高制动能量的回收率,此外它还具有循环寿命长、充放电效率高、耐低温特好以及免维护等优点。这种方案由于受到超级电容价格昂贵的影响,限制了它在混合动力汽车上的广泛应用。在进一步降低成本,提高能量密度后,超级电容器最有可能首先在混合动力公交车上得到应用。
3、插电式混合动力汽车
插电式混合动力汽车是最新的一代混合动力汽车类型,近年来受到各国政府、汽车企业和研究机构的普遍关注,国内外专家认为,PHEV有望在几年后得到广泛的推广使用。
据统计,法国城镇居民80%以上日均驾车里程少于50km,在美国,汽车驾驶者也有60%以上日均行驶里程少于50km,80%以上日均行驶里程少于
90km。PHEV特别适合于一周有5天仅驾车用于上下班,行驶里程50~90km之间的工薪族使用。PHEV是在混合动力汽车上增加了纯电动行驶工况,并且加大了动力电池容量,使PHEV采用纯电动工况可行驶50~90km,超过这一里程,即必须起动内燃机,采用混合驱动模式。所以PHEV的电池容量一般达5~10kW·h,约是纯电动汽车电池容量的30~50%,是一般混合动力汽车电池容量的3~5倍,可以说它是介于混合动力汽车与纯电动汽车之间的一种过渡性产品。与传统的内燃机汽车和一般混合动力汽车(HEV)对比(见表5),PHEV由于更多的依赖动力电池驱动汽车,因此它的燃油经济性进一步提高,二氧化碳和氮氧化物排放更少。由于动力电池容量的加大,每辆车的售价至少比一般HEV高2000美元。
图3示出了四种不同类型乘用车,它们的蓄电池容量与汽车价格、燃油消耗及尾气排放的对比关系。可见随着蓄电池容量的加大,汽车价格将上升,但是燃油消耗和尾气排放则下降。因此可以认为,电动汽车是以使用和损耗蓄电池为代价来换取节油、减排的效果,动力电池性/价比的大幅提升将是电动汽车能否迅速推广使用的关键所在。
一般HEV动力电池SOC仅在较小范围内波动(例如±2%~3%)因此循环寿命次数很长,而PHEV的动力电池SOC必须在很大的范围内波动(例如±40%),属于深充深放,因此循环工作寿命短得多,和纯电动汽车(PEV)相似。目前在PHEV上都采用先进的锂离子电池,由表1可知,锂离子电池每放出1kWh电能,能耗费为10.2元,相当于内燃每
kWh能耗费用的3倍。随着全球石油价格不断上升,燃油内燃机的能耗费用也将不断上升,而锂离子电池随着技术进步和产量的扩大,其能耗费用将不断下降(如图4所示),二者可能在2015至2020年内达到平衡点。因此PHEV有望在10年内得到大面积推广使用。
4、燃料电池电动汽车
早在1839年,英国人格罗孚就提出了氢和氧反应发电的原理。20世纪60年代,研发出了液氢和液氧发电的燃料电池,由美国UTC公司首先用于航天和军事用途。近20年来,由于石油危机和大气污染日趋严重,以质子交换膜式为代表的燃料电池技术,受到世界各国普遍重视。各大跨国汽车公司纷纷投入巨资,研发出了各种类型的燃料电池电动汽车(FCEV)。
4.1质子交换膜燃料电池(PEMFC)主要优点
(1)其排放生成物是水及水蒸汽,为零污染
(2)能量转换效率可高达60~70%
(3)无机械振动、低噪声、低热辐射
(4)宇宙质量中有75%是氢,地球上氢也几乎是无处不在。氢还是化学元素中质量最轻、导热性和燃烧性最好的元素
(5)氢的热值很高,1kg氢和3.8L汽油的热值相当。
4.2燃料电池电动汽车存在的技术、经济问题
在我国,国家科技部将研发燃料电池客车和燃料电池轿车列为“十五”和“十一五”计划“863”重大科技项目。并已取得一系列重大科技成果,但是在多年科研实践中,也暴露出一些技术、经济问题:
(1)燃料电池发动机的耐久性寿命短
一般仅1000~1200小时(国外达2200小时),燃料电池汽车行驶4~5万km,功率即下降~40%,和传统内燃机可普遍行驶50万km以上相比,差距很大
(2)燃料电池发动机的制造成本居高不下
一般估计3万元/kW(国外成本约3000美元/kW),与传统内燃机仅200~350元/kW相比,差距巨大。由于其中如质子交换膜、炭纸、铂金属催化剂、高纯度石墨粉、氢回收泵、增压空气泵等关键部件均依靠进口,所以与国外相比,并没有成本优势
(3)燃料电池发动机对工作环境的适应性很差
国产可在0~40℃气温下工作,低于0℃有结冰问题,高于40℃过热不能正常工作此外对空气中的粉尘、一氧化碳、硫化物等都十分敏感,铂催化剂极易污染中毒失效
(4)燃料电池汽车的使用成本过于高昂
例如高纯度(99.999%)高压氢(>200大巴)售价约80~100元/kg。按1kg氢可发10kW·h电能计算,仅燃料费即约为10元
/kW·h,按燃料电池发动机工作寿命1000小时计算,折旧费为30元/kWh。所以总的动力成本达40元/kW·h。与表1对照可知,至少在目前,由燃料电池发动机提供1kWh电能的成本远高于各种动力电池,这从一个侧面反映了作为汽车动力源,燃料电池汽车还有相当的距离。
4.3目前燃料电池电动汽车的研究课题
尽管存在如此多的问题,但是燃料电池仍然是人类迄今为止,发明的最清洁、安静又可无限再生的能源,值得我们为实现燃料电池电动汽车的产业化,付出更大的努力。
为此建议从以下几个方面进行工作:
(1)以更为创新的思维,对燃料电池的基本理论和基础材料进行深入研究,例如努力探寻非铂金属催化剂努力研制抗电腐蚀金属双极板和耐高温(>110℃)高机械强度质子交换膜等
(2)努力实现如炭纸、增压空气泵等关键零部件的国产化,以降低整机成本
(3)进一步提高整机的优化集成技术,着力提高整机的耐候性(高、低气温变化)、抗大气污染能力和耐电负荷急剧变化能力等。
5、电机及电动车轮的分类
电动汽车驱动电机是所有电动汽车必不可少的关键部件。目前使用较多的有直流有刷、永磁无刷、交流感应和开关磁阻等四种电机。
美国和德国开发的电动汽车大多采用交流感应电机,主要优点是价格较低、效率高、重量轻,但启动转矩小。日本研制的电动汽车几乎全部使用永磁无刷电机,其主要优点是效率可以比交流感应电机高6个百分点,但价格较贵,永磁材料一般仅耐热120℃以下。开关磁阻电机结构较新,优点是结构简单、可靠、成本较低、起动性能好,没有大的冲击电流,它兼有交流感应电机变频调速和直流电机调速的优点,缺点是噪声较大,但仍有一定改进余地。表6列出四类电机比较。
显然表6中四种电机各有优缺点,但是对于电动汽车而言,由于电能是由各类电池提供,价格昂贵而弥足珍贵,所以使用相对效率最高的永磁无刷电机是较为合理的,它已被广泛用于功率小于100kW的现代电动汽车上。
此外,在国外已有越来越多的电动汽车采用性能先进的电动轮(又称轮毂电机),它用电机(多为永磁无刷式)直接驱动车轮,因此无传统汽车的变速箱、传动轴、驱动桥等复杂的机械传动部件,汽车结构大大简化。但是它要求电机在低转速下有很大的扭矩,特别是对于军用越野车,要求电机基点转速∶最高转速=1∶10(见图5)。近几年,美、英、法、德等国纷纷将电动轮技术应用于军用越野车和轻型坦克上,并取得了重大成果。例如美海军陆战队在“悍马”基础上研制出串联式“影子”新型混合动力越野车,采用了电动轮技术,其结构及主要技术参数如表7所示。与传统“悍马”车对比试验,在同样侦察试验条件下,“悍马”耗油472kg,而“影子”仅耗油200kg同一越野路段,“悍马”耗时32分钟跑完,而“影子”仅耗时13分50秒,此外它还具有在纯电动模式下,汽车静音、无“热痕迹”等优点。如此优异的性能,据闻美军已决定停产传统“悍马”车,全部改产新型混合动力电动轮驱动的“影子”型军车。这一重要发展趋势,应引起高度关注。
二、电动汽车发展趋势
综上所述,可以从技术/经济分析出发,对电动汽车技术的现状和未来作如下结论:
(1)在目前国内市场价格的基础上,可粗略计算出各种提供电能技术的价格比。即电网供电∶柴油机供电∶铅酸电池供电∶镍氢电池供电∶锂离子电池供电∶燃料电池供电=1∶6∶6∶19.2∶20.4∶80。这从一个侧面反映了各种供电方式距离电动汽车市场的远近。当然,随着石油价格的上升、电池技术的进步,这些比例关系将发生很大的变化
(2)由于铅酸电池的供电成本大体和柴油机供电相等,因此它仍然是低端电动车市场的主要动力电池。磷酸锂离子电池技术进步较快,它最有可能成为铅酸电池的竞争对手,率先成为高端电动车市场的主要动力电池
(3)由于混合动力汽车仅需装用纯电动汽车1/10的动力电池容量,整车有较为接近市场的性/价比,因此它仍将是近期实现产业化的主要电动汽车种类。考虑到我国国情,目前仍应大力推广使用混合动力大客车,进一步降低制造成本,减少油耗和排放
(4)在锂离子电池性/价比进一步提升后,外接充电式混合动力汽车(PHEV)有望成为理想的上班族乘用车,它可大幅度减少油耗和降低排放,但是由于较高的价格,它可能首先在发达国家得到推广应用
(5)燃料电池虽然是理想的清洁能源,但是目前它的性/价比太低,要达到可以进入市场的性/价比,可说是任重而道远,必须从基础材料和基本理论上有重大突破,才可能进入汽车市场
(6)电动轮已成为国外电力驱动技术的重要发展趋势,并已在军用越野车上得到实际应用,证实它在技术/经济上的重要优势,我国虽也有不少单位研发,但始终未进入“863”计划,技术进步缓慢,因此有必要奋起直追,尽快掌握这一先进的电驱动技术。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)