SEM扫描电镜图怎么看,图上各参数都代表什么意思

SEM扫描电镜图怎么看,图上各参数都代表什么意思,第1张

1、放大率:

与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。

所以,SEM中,透镜与放大率无关。

2、场深:

在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。

3、作用体积:

电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。

4、工作距离:

工作距离指从物镜到样品最高点的垂直距离。

如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。

5、成象:

次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。

6、表面分析:

欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。

表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。

观察方法:

如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。

尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。

扩展资料:

SEM扫描电镜图的分析方法:

从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。

图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。

将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。

参考资料:百度百科-扫描电子显微镜

纳米科学与基因工程、智能技术一起被世界学术界称为人类21世纪三大尖端技术。那么,纳米科学是什么?它又为什么被称为尖端技术呢?首先,纳米是长度单位,1纳米等于十亿分之一米,人的1根头发就有6万纳米那么粗!当物质的尺度达到纳米级别时,性质是否会发生变化?或者会有什么奇特的性质呢?纳米科学就是为了研究和回答这些问题的。研究发现,当物质的尺度达到纳米级别时,性质会发生巨大的改变,展现出独特的光学、力学等性质,例如,将金属的纳米颗粒制成块状金属材料,其强度比一般金属高十几倍。

研究纳米材料时首先需要了解它的样子。纳米技术的研究范围为1~100纳米,这样的尺寸用普通的光学显微镜是观测不到的。直到20世纪30年代,科学家发明了电子显微镜,包括透射电子显微镜(TEM)和扫描电子显微镜(SEM),大大提升了对物质的分辨率,透射电子显微镜的分辨率甚至可以达到几纳米。另外,2014年获得诺贝尔化学奖的超高分辨率荧光显微镜也突破了光学衍射极限,可以达到低于200纳米的分辨率,这些技术和工具在纳米科学研究中都是不可或缺的。

下面几幅作品,是研究人员发现的或奇特或美丽的纳米结构,它们的出现为略显枯燥的科研生活增添了一抹亮色,让我们一起来欣赏吧!

1.喷薄欲出

取图仪器:SEM,S-4800

图片介绍:图中薄薄的一层纱是氧化石墨烯,纳米球则是由银/卤化银组成。一个形貌良好的纳米结构,不仅有助于我们探索结构与性能的关系,为获得高性能功能材料提供参考,而且还可以激起研究人员的兴趣,有利于研究成果的推广。本图作者用此图片作为研究成果的图文摘要,引起了同行的极大关注,在五年内被引用超过300余次,入选为高被引论文。

2.玩偶之家

取图仪器:扫描电镜S-4800

图片介绍:将有机物在乙醇中加热溶解,冷却后形成沉淀,呈现出的结构如同各式的积木相接。小时候的你是否也有一个玩偶之家的梦想?这种结构不仅漂亮,而且简单的合成方法也使这种结构可以得到广泛的应用。

3.纳米螃蟹

取图仪器:正直偏光显微镜

图片介绍:有机材料具有可修饰性,通过改变其组成可以在很大范围内调整其性能,这是有机材料优于无机材料的主要特点。为了更好地调控有机材料的性能,研究人员需要研究单一变量对材料性能的影响,所以需要制备有机单晶。物理气相沉积是制备有机单晶的主要方法之一。图片是在物理气相传输过程中形成的花样,组成了两只大小各异的螃蟹,它们神态自然,憨态可掬,惟妙惟肖!

4.时间之花

取图仪器:扫描电镜S-4800

图片介绍:铜(Cu)无机配位聚合物,静置扩散十五天。在十五天的缓慢孕育中,这种配合物材料绽放了,不仅给科研人员带来欣喜,这种独特的形貌也将带来独特的应用。

5.微观世界的冰糖葫芦

取图仪器:JEOL JSM-6700F型扫描电镜

图片介绍:人体中的牙齿、骨骼都是生物矿物,均由无机和有机材料组成,有机材料如蛋白质等如何调控无机矿物的形貌和生长对我们理解生物矿化过程十分重要。图中的“葫芦”是碳酸钙,也是自然界中含量最丰富的生物矿物,葫芦棒是聚丙烯丝,是一种疏水的有机材料,从图中我们可以看到这种有机材料可以调控碳酸钙的形貌和晶型。

怎么样?在显微镜下呈现出来的纳米世界是不是千姿百态?犹如雕琢后的惟妙惟肖,再加上色彩的渲染更是形象逼真。就像神奇的大自然带给我们的惊喜一样,这些微小的结构也不禁让我们感叹科学的奇妙。下次听说生活中的纳米材料时,如果你搜索一下这个材料背后的故事,也许就会发现一个神奇的世界!

“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。

本文由科普中国移动端出品,转载请注明出处。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/435315.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-28
下一篇2023-05-28

发表评论

登录后才能评论

评论列表(0条)

    保存