如何提高纳米材料抗氧化性能和抗松缩的性能,其实这个还是有一定难度的,一般来说新买回来的纳米材料或者是其他的材料可以经过热水烫一下,可能直接会直接送出这样会抵抗一些收缩的性能。
东华大学闫建华:静电纺丝技术制备具有可调几何结构的分层多孔碳纳米纤维
DOI: 10.1021/acsami.1c12302
多孔碳纳米纤维(PCNFs)具有丰富的离子、分子和纳米粒子传输通道,但对其多孔结构的控制仍然是一项挑战。在本研究中,以聚四氟乙烯为孔模板,硼酸为交联剂,聚乙烯醇和聚氨酯为双碳前体,通过一种可扩展的静电纺丝技术制备了具有可调几何形状和大/中/微孔结构的柔性PCNF。在水溶剂中,带负电的模板与带正电的碳前驱体交联,形成用于静电纺丝的稳定溶胶。通过改变这些前体的质量比,电纺杂化纳米纤维在碳化后直接转化为B-F-N-O掺杂的PCNFs,具有可调节的大孔、中孔和微孔。单根PCNF的孔隙率高达85%,孔体积可在0.23至0.58 cm3·g-1之间调节。当使用独立的PCNF薄膜构建高硫含量(86wt%)电极时,具有丰富电活性位点的多孔结构为聚阴离子提供了快速通道,并对多硫化物具有较强的化学吸附,从而产生了良好的电化学性能。本文所报告的策略为合成多用途的分层PCNFs提供了新的视角。
图1.材料制备过程示意图。使用通用静电纺丝技术以及随后的预氧化和碳化工艺来制备具有丰富缺陷和分层大/中/微孔的柔性PCNF的示意图。
图2.材料表征。(a-c)不同PCNFs的扫描电子显微镜(SEM)图像和(d,e)N2吸附-解吸等温线。(f)不同孔隙的体积分数。(g)不同PCNFs的微孔面积和外表面积。(h)不同PCNFs的累积孔体积和(i)平均孔径。
图3.分层孔隙形成机理及材料表征。(a)使用分子设计策略在PCNFs中形成分层多孔结构的概貌。(b)PCNF薄膜的横截面SEM图像和数码照片。(c)PCNFs的表面形态,(d)TEM图像和(e)EDS映射光谱。(f)PCNFs的N1s和(g)B1s XPS光谱。
图4.Li-S电池的电化学性能分析和化学吸附机理。(a-b)多硫化物在H型电池中渗透的捕获照片,该电池以PCNF薄膜为隔膜。(c)在0.1mV·s-1下进行五次循环的连续CV测试。(d)0.5C下的恒电流放电和充电曲线。(e)循环前和在0.5C下循环50次后电池的EIS谱。(f)0.1至4C的额定容量。(g)在2C下进行200次放电和充电循环的长期稳定性测试。(h)多硫化物在具有独特多孔结构和缺陷的PCNF笼中的强化学吸附示意图。
碳纳米管不属于胶体分散系。原因:
胶体分散系有三大特征:
①有丁达尔效应,即当一束光通过胶体时,从入射光的垂直方向上可看到有一条光带,这个现象叫丁达尔现象。利用此性质可鉴别胶体与溶液、浊液。
②有电泳现象,即由于胶体微粒表面积大,能吸附带电荷的离子,使胶粒带电。当在电场作用下,胶体微粒可向某一极定向移动。
③可发生凝聚,即加入电解质或加入带相反电荷的溶胶或加热均可使胶体发生凝聚。如用豆浆制豆腐,从脂肪水解的产物中得到肥皂等。
碳纳米管悬浮液不具备以上胶体分散系的特征,所以碳纳米管悬浮液不是胶体分散系。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)