SEM结构方程模型是什么?

SEM结构方程模型是什么?,第1张

sem 结构方程模型是社会科学研究中的一个非常好的方法。该方法在20世纪80年代就已经成熟,可惜国内了解的人并不多。“在社会科学以及经济、市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。20世纪80年代以来,结构方程模型迅速发展,弥补了传统统计方法的不足,成为多元数据分析的重要工具。 结构方程模型分析:结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。

结构方程模型(SEM, Structural Equation Modeling)是建立在回归模型(Regression Models)的基础上,针对潜变量(Latent Variables)的统计方法。

&ltimg src="https://pic1.zhimg.com/v2-9097acc14cb5f4a901d4e2d1cf883030_b.png" data-rawwidth="308" data-rawheight="260" class="content_image" width="308"&gtf为latent variable, 例如智力、自尊等,在该SEM模型中为predictor。y1,y2,y3为observed variables, 即可直接测量得到的变量,在该SEM模型中为indicators。λ1-3为factor loadings,ε为residual error。

f为latent variable, 例如智力、自尊等,在该SEM模型中为predictor。y1,y2,y3为observed variables, 即可直接测量得到的变量,在该SEM模型中为indicators。λ1-3为factor loadings,ε为residual error。

先前提到SEM是建立在regression model基础上的,该模型可写为如下方程:

y1 = λ1*f + ε1

y2 = λ2*f + ε2

y3 = λ3*f + ε3

即可看到与regression model的联系。

SEM较为广泛应用的是方差/协方差估计法。即可由上述方程写出关于y1,y2,y3的方差/协方差矩阵:(σ为f的variance)

&ltimg src="https://pic3.zhimg.com/v2-4d1ae9e59cf5987bc5ad78ac07b42c7a_b.png" data-rawwidth="453" data-rawheight="93" class="origin_image zh-lightbox-thumb" width="453" data-original="https://pic3.zhimg.com/v2-4d1ae9e59cf5987bc5ad78ac07b42c7a_r.png"&gt而后计算机根据实际矩阵,对factor loadings等parameters进行估计并输出估计矩阵,与实际矩阵差异最小(最理想)时,即输出结果,得到各估计参数和拟合指数。

而后计算机根据实际矩阵,对factor loadings等parameters进行估计并输出估计矩阵,与实际矩阵差异最小(最理想)时,即输出结果,得到各估计参数和拟合指数。

应用较多的模型/方法:MIMIC, multiple group models(比较组间差异), latent growth modeling(比较纵向差异)等。

应用广泛的软件:

1、Mplus。优点:编程简单,结果全面。缺点:收费,贵。学生版是300$。

2、Amos。优点:傻瓜,画图拖数据即可。缺点:模型稍一复杂就很费时。

3、R。下个package即可。优点:兼容性、专业性强。缺点:用的人少,不利于伸手党。

4、LISREL。优点:易入门。缺点:需输入各矩阵,略过时。

其他还有一些软件,不了解。

SEM入门不久,以上为个人理解,求探讨求轻喷。么么哒

    结构方程模型(SEM)包括连续潜变量之间的回归模型(Bollen, 1989Browne &Arminger, 1995Joreskog &Sorbom, 1979)。也就是说,这些潜变量是连续的。这里需要注意的是:1. 潜变量(latent variables)是与观察变量(Observed variables)相对的,可通过数据分析观察;2. 观察变量可以是连续的(continuous)、删失的(censored)、二进制的(binary)、有序的(ordinal)、无序的(nominal)、计数的(counts),或者是这些类别的组合形式。

    SEM有两个部分:一个测量模型(measurement model)和一个结构模型(structural model)。

     测量模型 相当于一个多元回归模型(multivariate regression model),用于描述一组可观察的因变量和一组连续潜变量之间的关系。在此,这一组可观察的因变量被称为因子指标(factor indicators),这一组连续潜变量被称为因子(factors)。

    如何描述它们之间的关系?可以通过以下方式:

1. 若因子指标是连续的,用线性回归方程(linear regression equations);

2. 若因子指标是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);

3. 若因子指标是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);

4. 若因子指标是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);

5. 若因子指标是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。

     结构模型 则在一个多元回归方程中描述了三种变量关系:

1. 因子之间的关系;

2. 观察变量之间的关系;

3. 因子和不作为因子指标的观察变量之间的关系。

    同样,这些变量有不同的种类,所以要根据它们的类别来选择合适的方程进行分析:

1. 若因子为因变量,及可观察的因变量是连续的,用线性回归方程(linear regression equations);

2. 若可观察的因变量是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);

3. 若可观察的因变量是二进制的或者是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);

4. 若可观察的因变量是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);

5. 若可观察的因变量是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。

    在回归中,有序的类别变量可通过建立比例优势(proportional odds)模型进行说明;最大似然估计和加权最小二乘估计(maximum likelihood and weighted least squares estimators)都是可用的。

    以下特殊功能也可以通过SEM实现:

1. 单个或多组分析(Single or multiple group analysis);

2. 缺失值(Missing data);

3. 复杂的调查数据(Complex survey data);

4. 使用最大似然估计分析潜变量的交互和非线性因子(Latent variable interactions and non-linear factor analysis using maximum likelihood);

5. 随机斜率(Random slopes);

6. 限制线性和非线性参数(Linear and non-linear parameter constraints);

7. 包括特定路径的间接作用(Indirect effects including specific paths);

8. 对所有输出结果的类型进行最大似然估计(Maximum likelihood estimation for all outcome types);

9. bootstrap标准误差和置信区间(Bootstrap standard errors and confidence intervals);

10. 相等参数的Wald卡方检验(Wald chi-square test of parameter equalities)。

    以上功能也适用于CFA和MIMIC。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/436968.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-29
下一篇2023-05-29

发表评论

登录后才能评论

评论列表(0条)

    保存