粉体SEM图片怎么分析?

粉体SEM图片怎么分析?,第1张

观察不同类型的材料做对比的话,尽量选取相同放大倍数的照片进行对比。这样的话更有说服力,SEM最大的作用就是观察材料的微观结构和形貌,如果准备写文章的话,文章中将你的SEM照片视野范围内的现象描述清楚即可。

在设备发展历史当中,扫描电镜首先发明,但开始阶段扫描电镜分辨率对于光学显微镜没有优势,电子探针优先扫描电镜商品化应用。

最早的电子探针不能成像,将光学显微镜集成在电子光学镜筒中,使用光学显微镜观察组织形貌,然后调节偏转线圈,将电子束定位在感兴趣区域,使用x射线波谱仪对该区域的化学成分进行定性定量。电子探针主要应用在金属材料和矿物研究方面,对于金相学和岩相学的发展完善起到关键作用。

对于金属材料,断口失效微观分析是最需要经常观察的,在扫描电镜可以承担重任之前,都采用透射电镜复制断口形貌(C膜复形),采用扫描透射方式观察,费时费力。

可以直接观察断口形貌特征的扫描电镜,一直在极力发展当中,随着二次电子探测器的改进,和成像理论的完善,扫描电镜分辨率有了实质性提高,扫描电镜进入商品化发展阶段。金属材料粗糙断口微观形貌基本不再使用透射电镜,在扫描电镜之下一目了然,而且扫描电镜可以从肉眼可见的宏观区域到微米量级区域结构进行大景深很有立体感的观察,极大改善了研究条件。

随着扫描电镜技术突破,电子探针紧跟着进行改进,集成扫描电镜技术及X射线波谱技术,可以微观成像,在远超过光学显微镜视力范围的感兴趣区域进行精确化学成分分析。

扫描电镜进入商品化初期,分辨率距离理论分辨率还有非常大的差距,因此扫描电镜的商品化发展非常迅速,到目前为止最好的扫描电镜,已经基本接近当前一般设计的理论分辨率。由于电子探针的使命是进行X射线微区分析,而X射线作用区的空间分辨率理论上被定位在一到几个微米范围,和电子光学系统分辨率关系不大。因此电子探针技术并不追求高分辨率。就目前来说,钨灯丝电子探针的分辨率基本停留在上世纪七十年代扫描电镜的分辨率水平,就足够了。

半导体材料在X射线探测技术上的应用,导致X射线能谱仪的发明和迅速广泛使用。X射线能谱仪可以同时分析进入探测硅片的所有元素特征X射线,同时展谱,而WDS对元素逐个搜索和展谱需要漫长的时间,早期一个元素定性可能都需要几个小时,而EDS只需要几分钟即可对所有元素完美实现定性。因此EDS被广泛配置在SEM中,用于高分辨观察和微区化学定性及半定量研究,在金属材料断口分析中起到重要作用;同时EDS也被配置在电子探针当中主要用于化学定性,替代WDS漫长的搜索定性,WDS直接用EDS结果直接进行定量分析,极大提高了电子探针的分析速度。

另外电子探针的WDS定量分析,都使用标准样品。而EDS大多进行无标样分析。

---- 以上讲的可能太罗嗦,希望有点用!

还原出的钼粉氧含量可低于400ppm,但当粉体在进行卸料、筛分、混料而暴露在空气中时,不可避免会被自然氧化。

粉体脱氧是获得低氧钼粉的方法。高温是降低氧含量最简单的方法,但通常需要在1300℃以上将粉体半烧结,然后在保护气氛下粉碎-过筛,这种方法中高温机附加的粉碎等程序使处理成本增加。金属还原剂也可用来脱氧,将镁和钙加入到钼粉中加热将氧分离,这些杂质可以用水或稀酸溶解去除,这种方法会在金属表面形成氧化物层从而影响金属粉末冶金性能。等离子熔融脱氧要求高于金属熔点的温度来去除氧;最近也研制出原子氢脱氧,可用于对氧含量要求非常高的情况下,成本较高。

技术实现要素:

本发明的目的是提供一种降低钼粉氧含量的方法,该方法首先对钼粉表面氧化物进行检测表征,根据表征结果对钼粉表面氧化物进行还原,低成本制备低氧钼粉。

本发明所采用的技术方案是,一种降低钼粉氧含量的方法,具体包括如下步骤:

步骤1,对钼粉表面氧化物类型进行分析,并对mo的价态进行表征;

步骤2,根据步骤1分析后确定的钼粉表面氧化物类型进行氢气还原脱氧处理;

步骤3,经过步骤2的脱氧处理后,对产品进行真空包装。

本发明的特点还在于,

步骤1中通过x射线光电子分析钼粉表面氧化物类型。

步骤2中,当钼粉表面氧化物为二氧化钼,钼的价态为正四价时,则进行高温还原脱氧。

高温还原脱氧条件为:反应温度600-900℃,氢气露点范围-30~+30℃。

步骤2中,当钼粉表面氧化物为三氧化钼,钼的价态为正六价时,则进行低温还原-高温还原两段脱氧。

低温-高温两段还原脱氧条件为:低温反应温度300-600℃,高温反应温度600-900℃,氢气露点范围-30~+30℃。

本发明的有益效果是,由于氧化钼类型不同,脱氧工艺也随之不同,本发明首先对钼粉表面氧化物进行检测表征,根据表征结果对钼粉表面氧化物进行还原,不同价态的钼进行还有时采用的温度不同,本发明采用的钼粉脱氧方法成本较低。

具体实施方式

下面结合具体实施方式对本发明进行详细说明。

本发明一种降低钼粉氧含量的方法,具体包括如下步骤:

步骤1,通过x射线光电子分析对钼粉表面氧化物类型进行分析,并对mo的价态进行表征;

步骤2,根据钼粉表面氧化物类型进行氢气还原脱氧处理:如氧化物为二氧化钼(钼价态+4价),进行高温还原脱氧;如氧化物为三氧化钼(钼价态为+6价),进行低温还原-高温还原两段脱氧。针对氧化钼类型的不同脱氧工艺是基于反应原理的不同。二氧化钼-钼粉还原过程为吸热反应,可直接采用高温氢气还原;三氧化钼-二氧化钼还原过程为放热反应,如直接采用高温还原,因反应过程的大量放热而使三氧化钼与还原中间体产生低熔点熔融体,阻碍氢气的渗入和反应的深入进行。

步骤2中高温还原脱氧条件为:反应温度600-900℃,氢气露点范围-30~+30℃;低温-高温两段还原脱氧条件为:低温反应温度300-600℃,高温反应温度600-900℃,氢气露点范围-30~+30℃。

步骤3,经过步骤2的脱氧处理后,对产品进行真空包装。

实施例1

自然氧化的钼粉200g,氧含量约1200ppm.经x射线光电子分析表面氧化物主要为三氧化钼。将钼粉置于氢气还原炉中,反应温度为:低温段400~550℃、高温段700-800℃,氢气露点-10℃,反应时间为:各温区各1h,反应完成后,产品进行真空包装。炉前取样,测钼粉氧含量360ppm。

实施例2

自然氧化的钼粉200g,氧含量约1200ppm.经x射线光电子分析表面氧化物主要为三氧化钼。将钼粉置于氢气还原炉中,反应温度为:低温段300~400℃、高温段600-700℃,氢气露点-30℃,反应时间为:各温区各1h,反应完成后,产品进行真空包装。

实施例3

自然氧化的钼粉200g,氧含量约1200ppm.经x射线光电子分析表面氧化物主要为三氧化钼。将钼粉置于氢气还原炉中,反应温度为:低温段500~600℃、高温段800-900℃,氢气露点+30℃,反应时间为:各温区各1h,反应完成后,产品进行真空包装。

实施例4

自然氧化的钼粉500g,氧含量约1000ppm.经x射线光电子分析表面氧化物主要为二氧化钼。将钼粉置于氢气还原炉中,反应温度700-800℃,氢气露点-25℃,反应时间各温区各2h,反应完成后,产品进行真空包装。炉前取样,测钼粉氧含量400ppm。

实施例5

自然氧化的钼粉500g,氧含量约1000ppm.经x射线光电子分析表面氧化物主要为二氧化钼。将钼粉置于氢气还原炉中,反应温度600-700℃,氢气露点-30℃,反应时间各温区各2h,反应完成后,产品进行真空包装。

实施例6

自然氧化的钼粉500g,氧含量约1000ppm.经x射线光电子分析表面氧化物主要为二氧化钼。将钼粉置于氢气还原炉中,反应温度800-900℃,氢气露点+30℃,反应时间各温区各2h,反应完成后,产品进行真空包装。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/438018.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-29
下一篇2023-05-29

发表评论

登录后才能评论

评论列表(0条)

    保存