“漏斗原理”其实在很多领域都有涉及和应用,比如销售行业的销售漏斗。在SEM中,漏斗模型是最重要的一个模型,也是日常分析问题最主要的思路。SEM的漏斗模型主要以用户浏览或使用过程划分,对应搜索营销的各个环节,构成要素分为以下:
1、展现量
展现量即关键词展现在用户前的次数,是漏斗原理的第一层。
影响展现量的因素主要分为3个:账户整体设置、关键词、网民搜索量。在账户整体设置方面,账户的投放地域、时段对展现影响较大。投放地域多、全天投放,账户的展现自然就高;在关键词方面,影响最大的是关键词的匹配模式。在百度搜索推广中,匹配模式主要分为广泛、短语-核心、短语-同义、短语-精确、精确5中,匹配模式越宽,展现越大;此外就是关键词的排名和数量。
2、点击量
点击即网民看到搜索推广后的点击次数。
影响因素主要分为2个:关键词、创意。关键词的排名是影响点击量的主要因素,此外,关键词的展示样式也是很大的一个因素,如闪投的点击率一般会高于普通创意(可见颜值的重要性)。创意方面,流畅影响链接对网民的吸引程度。创意还与账户的结构有关,因为创意以单元为单位,账户结构越合理,单元的关键词越相像,创意也就越流畅。
3、访问量
访问量即网民到达网页的次数,此时已经脱离SEM范围,主要与网页的网文时差、UI有关。
4、咨询量(注册量)
对于一些行业来说,这一层为咨询量,如教育行业的访问咨询,其他对于搜索推广的目的是用户注册的公司来说,这一层级即为注册量。
影响网民注册的因素主要有:loading page。其他如网页的访问时长等已经脱离了SEM的范围,而loading page是SEM所需要优化的。
5、订单量
订单量靠的是产品或者销售了。
以上是SEM中的漏斗原理,用户随着漏斗的层级一层一层流失,为了最后的订单量(或者注册量、咨询量)足够多,需要把从展现开始的每个层级尽可能做大,并且减小流失率。
在操作账户过程中,总会遇到各种各样的问题,这些问题很大一部分都需要用漏斗原理来思考和解决,因此对漏斗原理的一些过程指标以及他们到底对应我们日常数据中的哪一项、最终的影响结果是什么都需要掌握,这样在账户有问题时,才不至于无从下手纸上谈兵。
按照漏斗原理(这里以app注册推广为例),在转化过程中需关注的过程指标有:点击率、点击注册率、买单率,在推广的结果中需关注:ACP、注册成本、人均付费。
1、点击率
点击率=点击/展现
影响点击率的因素即为影响点击与展现的因素。主要分为关键词排名、创意质量度。关键词排名越高,点击越多;创意质量度越高,越吸引用户点击。
落实到优化措施中,提高关键词排名则需要调整关键词的质量度和出价;提高创意质量度则通过修改创意,让创意中的通配符与单元里的关键词更加吻合。
2、点击注册率=注册/点击
点击注册率是考量投放效果好坏的一个重要指标。影响的因素主要有关键词匹配方式、loading page、网页访问速度。其中网页访问速度不是投放人员所能控制,因此先不说;关键词的匹配方式影响所带来的搜索词,匹配方式越宽泛,带来的搜索词越多越杂,引起了无效点击;loading page的UI和内容是否能引导用户进行下一步的动作,对点击注册率也有很大的影响。
落实到优化措施中,通过查看搜索词报告和关键词报告,来进一步优化关键词的匹配方式,让流量更精准的流入到各个关键词中;对于loading page,则通过A/B test来测试不同页面的注册率,优选注册率高的。
3、买单率
买单率=买单人数/注册人数
买单率其实代表投放的准确度和用户质量的高低,投放越精准,带来的用户质量越高(即为目标用户),则买单率自然不会低。所以我个人觉得这是一个衡量投放整体情况的指标。当买单率较低时,因为搜索账户目前没有定向方式,因此可以看注册用户的用户属性,通过调整用户属性来优化投放。
4、ACP
ACP就是平均点击价格,ACP=消费/点击次数
当ACP提高时,不可避免的注册成本就会提高,因此ACP可以说是注册成本的另一种形式的表达。如果账户中ACP提高,但注册成本并没有多大变化,那么账户中一定有注册成本很小的词存在。这也给投放优化带来了一点难度。
ACP的影响因素有:关键词出价、其他竞争对手的关键词出价、关键词质量度。在百度搜索推广中,关键词的点击成本有一个计算公式,公式里包含的因素即为上面罗列的这三个。
5、注册成本
注册成本=消费/注册
注册成本是搜索推广中非常重要的一个指标,成本的高低直接影响最后的账户回本。注册成本的影响因素比较多,也比较复杂,因为注册成本是一个综合性的指标。
影响注册成本的原因可能有:ACP、点击注册率。因此可根据ACP与点击注册率的影响因素进行调整。
在投放过程中,最主要的是有一个思考的逻辑,发现问题,接着一步一步分析问题,找出影响因素后,再对应到数据指标中,由数据指标最后对应到优化操作。
refer1: https://www.douban.com/group/topic/113056536/refer2: http://www.woshipm.com/data-analysis/697156.html
现代营销观念认为:“营销管理重在过程,控制了过程就控制了结果。”用户行为分析之漏斗分析模型是企业实现精细化运营、进行用户行为分析的重要数据分析模型,其精细化程度影响着营销管理的成败,以及用户行为分析的精准度。粗陋的漏斗分析模型因为过程管理不透明、数据分析不精细、用户行为分析不科学而造成结果失控。因此,我们经常能够听到一些产品经理的抱怨不绝于耳:从启动 APP 到“支付成功”,用户转化率为何仅仅 0.8 %?
究竟什么是漏斗分析?漏斗分析是一套流程式数据分析,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。
漏斗分析模型已经广泛应用于流量监控、产品目标转化等日常数据运营与数据分析的工作中。例如在一款产品服务平台中,直播用户从激活APP开始到花费,一般的用户购物路径为激活APP、注册账号、进入直播间、互动行为、礼物花费五大阶段,漏斗能够展现出各个阶段的转化率,通过漏斗各环节相关数据的比较,能够直观地发现和说明问题所在,从而找到优化方向。
对于业务流程相对规范、周期较长、环节较多的流程分析,能够直观地发现和说明问题所在。值得强调的是,漏斗分析模型并非只是简单的转化率的呈现,科学的漏斗分析模型能够实现以下价值:
1.企业可以监控用户在各个层级的转化情况,聚焦用户选购全流程中最有效转化路径;同时找到可优化的短板,提升用户体验。
降低流失是运营人员的重要目标,通过不同层级的转情况,迅速定位流失环节,针对性持续分析找到可优化点,如此提升用户留存率。
2.多维度切分与呈现用户转化情况,成单瓶颈无处遁形。
科学的漏斗分析能够展现转化率趋势的曲线,能帮助企业精细地捕捉用户行为变化。提升了转化分析的精度和效率,对选购流程的异常定位和策略调整效果验证有科学指导意义。
3.不同属性的用户群体漏斗比较,从差异角度窥视优化思路。
漏斗对比分析是科学漏斗分析的重要一环。运营人员可以通过观察不同属性的用户群体(如新注册用户与老客户、不同渠道来源的客户)各环节转化率,各流程步骤转化率的差异对比,了解转化率最高的用户群体,分析漏斗合理性,并针对转化率异常环节进行调整。
先谈归因
在科学的漏斗分析中,需要科学归因设置。每一次转化节点应根据事件功劳差异(事件对转化的功劳大小)而科学设置。企业一直致力定义最佳用户购买路径,并将资源高效集中于此。而在企业真实的漏斗分析中,业务流程转化并非理想中那么简单。
以市场营销为例,市场活动、线上运营、邮件营销都可能触发用户购买。A 欲选购一款化妆品,通过市场活动了解 M 产品,后来在百度贴吧了解更多信息,但是始终没有下定决心购买。后来收到 M 公司的营销邮件,A 被打折信息及详实的客户评价所吸引,直接邮件内跳转至网站购买了该商品。
那么,在漏斗设置时,转化归因应该“归”哪一个渠道呢?在这个案例中,运营人员愿意以实际转化的事件的属性为准。邮件营销的渠道在用户购买决策的全流程中对用户影响的“功劳”最大、权重较大,直接促进用户转化。在科学的漏斗分析模型中,用户群体筛选和分组时,以实际转化事件——邮件营销来源的用户群体的属性为准,则大大增大了漏斗分析的科学性。
再一起看属性关联
在进行漏斗分析时,尤其电商行业的数据分析场景中,运营人员在定义“转化”时,会要求漏斗转化的前后步骤有相同的属性值。比如同一 ID(包括品类 ID、商品 ID)才能作为转化条件——浏览 iphone6,购买同一款 iphone6 才能被定义为一次转化。因此,“属性关联”的设置功能是科学漏斗分析不可或缺的内容。
漏斗模型是一套流程式数据分析,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况,是一种重要的分析模型。
漏斗分析模型已经广泛应用于网站和APP用户行为分析的流量监控、电商行业、零售的购买转化率、产品营销和销售等日常数据运营与数据分析的工作中。
例如:漏斗模型在电商网站中的应用,用户从首页进入最终完成支付的行为,大多需要经过几个环节,从商品/浏览分类——查看商品详情——加入购物车——生成订单——开始支付——完成支付——回购商品。这其中的每个环节都有一定的转化率,我们需要做的是监控用户在流程上各个层次的行为路径,寻找每个层级的可优化点,提高用户在每个层级之间的转化率,最终来提高GMV。
对于业务流程相对规范,周期较长、环节较多的流程进行分析,能够直观地发现和说明问题所在,可以更快地找出某个环节的转化率出现问题。
1、企业可以监控用户在各个层级的转化情况。
降低流失是运营人群的重要目标,通过不同层级的情况,迅速定位流失环节,针对性持续分析找到可优化点,如此提升用户留存率
科学的漏斗分析能够展现转化率趋势的曲线,能帮助企业精细地捕捉用户行为变化,提升了转化分析的精度和效率,对选购流程的异常定位和策略调整效果验证有科学指导意义。
3、不同属性的用户群体漏斗比较
漏斗对比分析是科学漏斗分析的重要一环,运营人员可以通过不同属性的用户群体(如新注册用户与老客户)各环节转化率,各流程步骤转化率的差异对比,了解转化率最高的用户群体,分析漏斗合理性,并针对转化率异常环节进行调整。
漏斗模型大致可分为以下几种:
1、AARRR模型:
从用户增长各阶段入手,包括Acquisition用户获取,Activation用户激活,Retention用户留存,Revenue用户产生收入,Refer自传播。改模型主要应用于互联网行业
2,消费漏斗模型:
一般用于页面结构和内容较为复杂的业务,从用户内容消费和流量走向的角度,宏观层面用于回答用户消费什么内容,微观层面则用于分析影响用户消费的问题是什么。主要流程是从 广告引流—商品介绍—场景打造—下单购买
3,电商漏斗模型:
典型的用户购买行为由以下连续的行为构成: 浏览首页—浏览商品—提交订单—支付订单 。
当我们期望观察各步骤间及总体转化率,可按以下步骤进行:
4、AIDMA模型:
主要的流程是 注意 → 兴趣 → 欲望 → 记忆 → 行动(购买) ,适用于品牌营销。
5、AISAS模型:
主要的流程是 注意-兴趣-搜索-行动-分享 ,在AIDMA模型的基础上增加了用户反馈的环节
操作网站:神策数据:https://manual.sensorsdata.cn/sa/latest/%E6%BC%8F%E6%96%97%E5%88%86%E6%9E%90-7540780.html
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)