问题二:验证性因子分析的定义 在社会调查研究构成中,研究者首先开发调查问卷。对应于每一个研究者所感兴趣的理论变量,问卷中往往有多个问题。比如,研究者对顾客的忠诚度感兴趣,忠诚度可能用购买频率、主观评估、消费比例等多个问题来衡量。这个理论变量就是因子,这些个别问题是测度项。验证性因子分析就是要检验购买频率、主观评估、消费比例是否真的可以反映忠诚度。与验证性因子分析相对的是探索性因子分析。在探索性因子分析中,比如,因为我们想让数据“自己说话”,我们即不知道测度项与因子之间的关系,也不知道因子的值,所以我们只好按一定的标准(比如一个因子的解释能力) 凑出一些因子来,再来求解测度项与因子关系。探索性因子分析的一个主要目的是为了得到因子的个数。探索的因子分析有一些。第一,它假定。在实际研究中,我们往往会假定一个因子之间没有因果关系,所以可能不会影响另外一个因子的测度项。第二,探索性因子分析假定测度项残差之间是相互独立的。实际上,测度项的残差之间可以因为共同方法偏差、子因子等因素而相关。第三,探索性因子分析强制所有的因子为独立的。这虽然是求解因子个数时不得不采用的机宜之计,却与大部分的研究模型不符。最明显的是,自变量与因变量之间是应该相关的,而不是独立的。这些局限性就要求有一种更加灵活的建模方法,使研究者不但可以更细致地描述测度项与因子之间的关系,而且并对这个关系直接进行测试。而在探索性因子分析中,一个被测试的模型(比如正交的因子) 往往不是研究者理论中的确切的模型。验证性因子分析 (confirmatory factor *** ysis) 的强项正是在于它允许研究者明确描述一个理论模型中的细节。那么一个研究者想描述什么呢?因为测量误差的存在,研究者需要使用多个测度项。当使用多个测度项之后,我们就有测度项的“质量”问题,即效度检验。而效度检验就是要看一个测度项是否与其所设计的因子有显著的载荷,并与其不相干的因子没有显著的载荷。当然,我们可能进一步检验一个测度项工具中是否存在共同方法偏差,一些测度项之间是否存在“子因子”。这些测试都要求研究者明确描述测度项、因子、残差之间的关系。对这种关系的描述又叫测度模型 (measurement model)。对测度模型的检验就是验证性测度模型。对测度模型的质量检验是假设检验之前的必要步骤。
问题三:菜鸟求教,验证性因子分析拟合指标的关系 主成分分析属于探索性因子分析(EFA),和验证性因子分析(CFA)不一样,它们基于不同的原理和计算方法,验证性因子分析往往更容易出现比较好的结果,因为它是在你设定好因子结构的情况下去检验这一种结构和你的数据是否拟合,不一定可以拟合你数据的模型只有一种,但只要你的这一种拟合指标好就OK,而探索性因子分析是完全靠数据说话,数据驱动,这当然更不容易获得满意的结果。如果你主成分分析结果不好,可以尝试直接用验证性因子分析,若是获得满意的结果,可以考虑报告验证性因子分析的结果而不报告主成分分析。
问题四:spss 如何做验证性因子分析 spss20以上纳入了amos,就可以直接做了
我替别人做这类的数据分析蛮多的
问题五:spss 如何做验证性因子分析? spss不能做验证性因子分析哦,要用spss里面的amos模块才行
可以做专业数据分析哦
问题六:如何用验证性因子分析共同方法偏差 我使用的Lisrel,设定 1 个公因子数,使研究中的所有测量项目负荷于这一共同因子,如果模型拟合良好就可以说明存在一个可以解释大多数变异的公共因子。如果分析结果发现所用测量项目负荷于共同因子时的各项拟合指数都不好,则说明研究的共同方法偏差属于可接受范围。
问题七:验证性因子分析 共同方法变异 怎么做 我使用的Lisrel,设定 1 个公因子数,使研究中的所有测量项目负荷于这一共同因子,如果模型拟合良好就可以说明存在一个可以解释大多数变异的公共因子。如果分析结果发现所用测量项目负荷于共同因子时的各项拟合指数都不好,则说明研究的共同方法偏差属于可接受范围。
问题八:如何用 SPSS 进行验证性因子分析 SPSS 不能进行验证性因子分析,只能进行探索性因子分析
用别的软件啊:Amos、Lisrel、Mplus等
问题九:怎么用AMOS对问卷进行验证性因子分析 用amos来做比较好
构建好模型之后运行分析,根据拟合指数以及载荷等判断即可。(南心网 Amos效度分析)
问题十:如何用amos做验证性因子分析 验证性因子分析主要探讨潜变量之间的相关关系而不是因果关系,在SEM中,模型构建分为两块,一块是测量模型,一块是结构模型,测量模型是测量潜变量和观测指标的关系模型,而结构模型则是测量潜变量之间的关系模型;所谓验证性因子分析就是主要探讨结构模型中的相关关系,操作很简单,你把潜变量之间用双箭头联系起来就可以了,当然,这里要注意一点,如果根据理论或者经验推测某两个潜变量之间完全不存在相关的话,可以不用双箭头联系;另外,AMOS里面的 *** ysis properties 模块设置中有个output选项,你点击critical ratios for difference 选项(打勾),运行数据后在text output的报表中可以根据临界比率(p是否小于.05)来判断潜变量之间的关系强度是否显著,如果小于临界比率,建议取消对应的潜变量双箭头。
验证性因子分析,是用于测量因子与测量项(量表题项)之间的对应关系是否与研究者预测保持一致的一种研究方法。尽管因子分析适合任何学科使用,但以社会科学居多。
目前有很多软件都可以非常便利地实现验证性因子分析,本文将基于SPSSAU系统进行说明。
因子分析可分为两种类型:探索性因子分析(EFA)和验证性因子分析(CFA)。
探索性因子分析,主要用于浓缩测量项,将所有题项浓缩提取成几个概括性因子,达到减少分析次数,减少重复信息的目的。
验证性因子分析与探索性因子分析相似,两者区别只在于探索性因子分析(EFA)用于探索因子与测量项之间的对应关系,验证性因子分析(CFA)用于验证结果与理论预期是否一致。
在实际研究中,验证性因子分析常会与结构方程模型、路径分析等方法联系到一起,对于不熟悉概念的研究人员容易搞混这些方法,下表对这几种方法进行简单说明:
探索性因子分析: 验证因子与分析项的对应关系,检验量表效度,非经典量表通常用探索性因子分析。
验证性因子分析: 验证因子与分析项的对应关系,检验量表效度,成熟量表通常用验证性因子分析。确认测量关系后,后续可进行路径分析/线性回归分析研究具体的影响关系。
路径分析: 用于研究多个自变量与多个因变量影响关系;如果因变量只有一个,可以使用线性回归分析。
结构方程模型SEM : 包括测量关系和影响关系。如果仅包括影响关系,此时称作路径分析(Path analysis,有时也称通径分析)。通常需要进行探索性因子分析和验证性因子分析,均保证测量关系无误之后,再进行结构方程模型构建。
从分析思路上看,建议先用探索性因子分析EFA构建模型,确定存在几个因子及各分析项与因子的对应关系,再用验证性因子分析CFA加以检验。
(1)模型设定
首先需要确定因子数及对应分析题项,顺序放入分析框内。
(2)模型拟合
通过因子载荷系数表格可以展示因子(潜变量)与分析项(显变量)之间的关系情况。如果因子与测量项间的对应关系出现严重偏差,或者因子载荷系数值过低,则需要删除掉该测量项。
分析时主要关注P值及标准载荷系数,建议结合SPSSAU给出的“分析建议”进行分析。
模型拟合指标用于整体模型拟合效度情况分析。
常用的拟合值及其判断标准,都展示在上表中,实际输出值在标准范围内及说明模型拟合程度较好。模型拟合指标非常多,通常下很难保证所有指标均达标,只要多数指标达标或接近标准值即可。
*常用指标包括卡方自由度比,GFI,RMSEA,RMR,CFI,NFI和NNFI。
(3)模型修正
根据模型拟合指标情况,评价模型的优劣,如果模型拟合情况不佳,则需要进一步修正模型。
MI指标越大说明该项与其他因子的相关性越强,MI过大时会干扰模型需要进行修正或剔除该项。
模型构建过程需要重复多次,以找到最优模型。同时SPSSAU会自动生成模型结果图。
(4)模型分析
在完成模型构建后,即可使用模型进行分析。验证性因子分析主要有三个方面的功能,分别是聚合效度、区分效度、共同方法偏差。
聚合效度
聚合效度,也叫做收敛效度。AVE和CR是用于判断聚合效度的常用指标,AVE>0.5,并且CR>0.7,则说明具有良好的聚合效度。如果AVE或CR值较低,可考虑移除某因子后重新分析聚合效度。
上图为SPSSAU输出的AVE、CR值指标表格,可以根据此表格进行查看。
区分效度
区分效度,常用的做法是将AVE根号值与‘相关系数值’进行对比,SPSSAU也会输出相应结果。
如果每个因子的AVE根号值均大于“该因子与其它因子的相关系数最大值”,说明具有良好的区分效度。
共同方法偏差
共同方法偏差,SPSSAU提供两种方法检验,一种是探索性因子分析(也称作Harman单因子检验方法),做法是将所有变量进行探索性因子分析,如果只得出一个因子或者第一个因子的解释力(方差解释率)特别大,则判定存在共同方法偏差。
另一种是验证性因子分析,所有变量全部放在一个因子里面进行分析,如果测量出来显示模型的拟合指标无法达标,模型拟合不佳,说明所有的测量项并不应该同属于一个因子,也就说明数据无共同方法偏差问题。
验证性因子分析需要较大的样本量,通常建议样本量至少为测量项(量表题)的5倍以上,最好10倍以上,且一般情况下至少需要200个样本。
一个因子对应的测量项最好在5~8个之间,便于后续删除掉不合理测量项。
绝大多数情况下均为一阶验证性因子分析。如果说验证性因子分析时为二阶模型,此时参数处选中‘二阶’即可。
一般来说,使用验证性因子分析需要有一定的理论基础支持,如果拟合指标不能达标,最好按照分析思路:探索性因子分析→验证性因子分析,进行分析。
以及对于不熟悉的步骤,建议大家阅读SPSSAU帮助手册的相关说明以及SPSSAU的教学视频。
验证性因子分析视频教学: https://www.bilibili.com/video/av69372013
上一篇文章中,初步介绍了验证性因子分析的功能及应用场景。下面通过一个实例来具体了解一下,验证性因子分析的操作步骤以及过程中需要注意的内容。当前有一份215份的研究量表数据,共由四个因子表示,第一个因子共5项,分别是A1~A5;第二项因子共5项,分别是B1~B5;第三个因子共4项,分别是C1~C4;第4个因子共6项,分别是D1~D6。现希望验证此量表的 聚合效度 和 区分效度 ,并且希望进行 共同方法偏差分析 。
验证性因子分析的步骤大致可分为四步,分别是:模型构建、删除不合理测量项、模型MI指标修正和模型分析。
(1)模型构建
即将因子与测量项对应关系放置规范;在进行CFA分析前一般需要进行EFA,清理掉对应关系出现严重偏差的测量项
(2)删除不合理测量项
如果因子与测量项间的对应关系出现严重偏差,此时可考虑删除某测量项;也或者某测量项与因子间的载荷系数值过低(比如小于0.5),说明该测量项与因子间关系较弱,需要删除掉该测量项
(3)模型MI指标修正
如果说模型拟合指标不佳,可考虑进行模型MI指标修正【SPSSAU默认提供MI大于20,MI大于10,MI大于5,和MI大于3共四种模型修正方式】
(4)最终模型分析
本例子中的量表共分为四个因子,暂不进行模型MI修正,放置如下:
SPSSAU共输出6个表格,各表格对应解释说明如下:
从上表可知,本次针对共4个因子,以及20个分析项进行验证性因子分析(CFA)分析。本次分析有效样本量为215,超出分析项数量的10倍,样本量适中。
CFA分析建议样本量至少为测量项(量表题)的5倍以上,最好10倍以上,且一般情况下至少需要200个样本。一个因子对应的测量项最好在5~8个之间,便于后续删除掉不合理测量项。
因子载荷系数表格展示 因子和测量项之间的关联关系 ,通常使用标准载荷系数值表示因子与分析项间的相关关系。分析时主要看标准载荷系数值和P值。
如果呈现出显著性,且标准载荷系数值大于0.70,则说明有着较强的相关关系。反之,如果没有呈现出显著性,也或者标准载荷系数值较低(比如低于0.4),则说明该分析项与因子间相关关系较弱。
上表格显示,B1与Factor2之间的因子载荷系数值为0.562 <0.7,说明对应关系较弱,可考虑将此项从Factor2中移除出去。从整体上看,各个测量项全部均呈现出0.001水平的显著性(P<0.001),而且标准化载荷系数值均大于0.7(除B1外),因而说明整体上看,因子与测量项之间有着良好的对应关系,聚合效度较好。
此表格主要查看指标的 聚合效度 和区分效度 情况,输出指标包括AVE和CR值。通常AVE值>0.5,CR值>0.7,说明数据聚合效度较好。
从上格可知:本研究涉及的4个因子(SPSSAU默认给定名字为Factor 1, Factor 2, Factor 3, Factor 4),它们的AVE值全部均大于0.5,而且CR值全部均大于0.7,因而说明本次测量量表数据具有优秀的聚合效度。
此表格展示 模型拟合指标 ,共分为常用指标和其它指标。表中提供各指标相应的建议判断标准,可直接对比判断标准值。一些其它指标通常使用较少,研究人员可结合实际情况进行选择。如果模型拟合不好需要,需要根据相关专业知识和模型修正指标对模型进行修正。
上表来看:卡方自由度值为3.389,大于3,而且GFI小于0.9,RMSEA为0.105接近于0.1这一标准,RMR值为0.091不在标准范围内。综合来看,模型构建欠佳,需要进行模型修正。比如这里将MI>10作为修正标准然后重新进行模型拟合,得到结果如下
上表格展示 因子与测量项的对应关系MI值 ,因子与其下属测量项的关系可通过因子载荷系数表格进行查看。MI值并不固定标准大小,一般情况下,该值如果大于20则说明关联性很强。
从上表格可以看到,C2与Factor2,Factor4这两个因子间的MI指标均大于15,说明C2与Factor2,Factor4之间可能有着较强的关联性;同时,D5与Factor3之间的MI值为18.121,说明二者有较强的关联性。
综合可知:可考虑将C2,D6这两个指标进行删除,同时上述因子载荷表格分析还发现B1也可以进行删除。因而将此三项进行删除后可再次进行模型(限于篇幅限制,SPSSAU并不继续进行分析)。
上表格展示因子与因子之间的关联性,可通过标准系数进行分析。从上表可知,在进行因子协方差表格分析时,本研究共4个因子,他们两两之间的标准系数值均介于0.6~0.85之间,说明因子之间具有较强的关联性。
聚合效度通常是针对 AVE,CR,因子载荷系数 这三个指标进行分析,并且均是在模型最终确认后的指标进行分析。
分析结果表明:本研究量表数据具有优秀的聚合效度
区分效度的测量是使用 AVE的平方根值 ,然后与4个因子的相关系数进行对比。
如果AVE平方根值大于“该因子与其它因子间的相关系数”,此时说明具有良好的区分效度。
区分效度首先需要进行相关分析(以及每个因子对应多项,需要使用‘生成变量’功能将其概括成一个整体后再进行两两相关分析)。如下:
常见的区分效度分析时,会将上表格中斜对角线的1,换成AVE值的平方根,然后再进行对比分析。最终如下表格式:
上图可知,因子1的AVE根号值为0.843,大于因子1与另外3个因子之间的相关系数值(最大为0.777);因子2的AVE根号值为0.84,大于因子2与另外3个因子之间的相关系数值(最大为0.753);类似地,因子3的AVE根号值,因子4的AVE根号值均大于它们与其它因子的相关系数值。因而说明研究量表数据的区分效度良好。
特别提示:
常见的区分效度分析是将AVE根号值与‘相关系数值’进行对比;有时候区分效度的验证方法为:“比较多个CFA模型进行分析说明”,建议研究人员以参考文献为准;
区分效度进行时,需要先进行相关分析,以及取AVE均方根,然后将手工表格合并处理好后进行分析说明。
共同方法偏差(CMV)常见有两种验证方式,一种是使用探索性因子分析EFA方法进行检验 (也称作Harman单因子检验方法),即查看把所有量表项进行探索性因子分析EFA时,如果只得出一个因子或者第一个因子的解释力(方差解释率)特别大,通常以50%为界,此时可判定存在同源方差(共同方法偏差),反之说明没有共同方法偏差问题。
如果是使用CFA进行验证;则将所有的测量项(即所有因子对应的测量量表题项)放在一个因子里面,然后进行分析,如果测量出来显示模型的拟合指标,比如卡方自由度比,RMSEA,RMR,CFI等无法达标,则说明模型拟合不佳,即说明所有的测量项并不应该同属于一个因子(放在一起时模型不好),因而说明数据通过共同方法偏差CMV检验,数据无共同方法偏差问题。
本次共有4个因子对应20个测量项,将此20个测量项全部放在一个因子里面进行CFA分析并且得到模型拟合指标,如下图:
上图显示卡方自由度值为11.137,明显高于标准(>3),并且GFI,CFI,NFI,NNFI这四个指标值全部均低于0.7,明显偏差标准值(大于0.9),RMSEA和RMR值均大于0.15,也严重偏差标准值。其它指标比如AGFI,IFI,PGFI,PNFI等也均低于0.7,严重偏差大于0.9这一标准,因而说明模型拟合质量非常糟糕,也即说明不能本次研究量表数据无法聚焦成一个因子,即说明无共同方法偏差问题。
特别提示:
上述为两种常见的共同方法偏差验证方法,还有其它验证方法,建议研究人员以参考文献为准;
研究人员需要在事前注意共同方法偏差问题,而不能等到事后发现共同方法偏差才能处理。
登录 SPSSAU官网 体验在线数据分析
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)