1、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(n<30),总体标准差σ未知的正态分布资料。
计算:t的检验是双侧检验,只要T值的绝对值大于临界值就是不拒绝原假设。
2、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
计算:概率定义为:P(A)=m/n,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。
拓展资料统计学是关于认识客观现象总体数量特征和数量关系的科学。它是通过搜集、整理、分析统计资料,认识客观现象数量规律性的方法论科学。由于统计学的定量研究具有客观、准确和可检验的特点,所以统计方法就成为实证研究的最重要的方法,广泛适用于自然、社会、经济、科学技术各个领域的分析研究。
参考资料:百度百科-统计学
《AMOS基础视频-张伟豪》百度网盘资源免费下载
链接:https://pan.baidu.com/s/16RPHmkWoFZYGTOfG9N7ghA
提取码:3mhhAMOS基础视频-张伟豪|张伟豪老师公开课视频.mp4|论文4_P.mp4|论文|论文|论文|论文|论文|论文|论文|base4_P.mp4|BASE-|BASE-
我用#CSDN#这个app发现了有技术含量的博客,小伙伴们求同去《皮尔逊相关系数和检验P值》, 一起来围观吧 https://blog.csdn.net/xiaocong1990/article/details/71267144?utm_source=app
看两者是否算相关要看两方面:显著水平以及相关系数
(1)显著水平,就是P值,这是首要的,因为如果不显著,相关系数再高也没用,可能只是因为偶然因素引起的,那么多少才算显著,一般p值小于0.05就是显著了;如果小于0.01就更显著;例如p值=0.001,就是很高的显著水平了,只要显著,就可以下结论说:拒绝原假设无关,两组数据显著相关也说两者间确实有明显关系.通常需要p值小于0.1,最好小于0.05设甚至0.01,才可得出结论:两组数据有明显关系,如果p=0.5,远大于0.1,只能说明相关程度不明显甚至不相关.起码不是线性相关.
(2)相关系数,也就是Pearson Correlation(皮尔逊相关系数),通常也称为R值,在确认上面指标显著情况下,再来看这个指标,一般相关系数越高表明两者间关系越密切.
R>0 代表连个变量正相关,即一个变大另一个随之变大
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)