【空间计量】(非原创)

【空间计量】(非原创),第1张

https://www.sohu.com/a/386218186_698752

目前,空间计量经济学研究包括以下四个感兴趣的领域:

计量经济模型中空间效应的确定; 合并了空间影响的模型的估计;空间效应存在的说明、检验和诊断;空间预测。

空间计量经济学模型有多种类型(Anselin,et al. 2004)。 首先介绍纳入了空间效应(空间相关和空间差异)、适用于截面数据的空间常系数回归模型,包括空间滞后模型(Spatial Lag Model,SLM)与空间误差模型(Spatial Error Model,SEM)两种,以及空间变系数回归模型——地理加权回归模型(Geographical Weighted Regression,GWR)。适用于时间序列和截面数据合成的空间面板数据计量经济学模型将在以后予以介绍。

空间滞后模型(Spatial Lag Model,SLM)主要是探讨各变量在一地区是否有扩散现象(溢出效应)。其模型表达式为:参数 反映了自变量对因变量的影响,空间滞后因变量 是一内生变量,反映了空间距离对区域行为的作用。区域行为受到文化环境及与空间距离有关的迁移成本的影响,具有很强的地域性(Anselin et al.,1996)。由于SLM模型与时间序列中自回归模型相类似,因此SLM也被称作空间自回归模型(Spatial Autoregressive Model,SAR)。

空间误差模型(Spatial Error Model,SEM)存在于扰动误差项之中的空间依赖作用,度量了邻近地区关于因变量的误差冲击对本地区观察值的影响程度。由于SEM模型与时间序列中的序列相关问题类似,也被称为空间自相关模型(Spatial Autocorrelation Model,SAC)。

估计技术:鉴于空间回归模型由于自变量的内生性,对于上述两种模型的估计如果仍采用OLS,系数估计值会有偏或者无效,需要通过IV、ML或GLS、GMM等其他方法来进行估计。Anselin(1988)建议采用极大似然法估计空间滞后模型(SLM)和空间误差模型(SEM)的参数。

空间自相关检验与SLM、SEM的选择:判断地区间创新产出行为的空间相关性是否存在,以及SLM和SEM那个模型更恰当,一般可通过包括Moran’s I检验、两个拉格朗日乘数(Lagrange Multiplier)形式LMERR、LMLAG及其稳健(Robust)的R-LMERR、R-LMLAG)等形式来实现。由于事先无法根据先验经验推断在SLM和SEM模型中是否存在空间依赖性,有必要构建一种判别准则,以决定哪种空间模型更加符合客观实际。Anselin和Florax(1995)提出了如下判别准则:如果在空间依赖性的检验中发现LMLAG较之LMERR在统计上更加显著,且R-LMLAG显著而R-LMERR不显著,则可以断定适合的模型是空间滞后模型;相反,如果LMERR比LMLAG在统计上更加显著,且R-LMERR显著而R-LMLAG不显著,则可以断定空间误差模型是恰当的模型。

除了拟合优度R2检验以外,常用的检验准则还有:自然对数似然函数值(Log likelihood,LogL)、似然比率(Likelihood Ratio,LR)、赤池信息准则(Akaike information criterion,AIC)、施瓦茨准则(Schwartz criterion,SC)。对数似然值越大,AIC和SC值越小,模型拟合效果越好。这几个指标也用来比较OLS估计的经典线性回归模型和SLM、SEM,似然值的自然对数最大的模型最好。

空间变系数回归模型及估计:就目前国内外的研究来看,大多直接假定横截面单元是同质的,即地区或企业之间没有差异。传统的OLS只是对参数进行“平均”或“全域”估计,不能反映参数在不同空间的空间非稳定性(吴玉鸣,李建霞,2006;苏方林,2007)。 当用横截面数据建立计量经济学模型时,由于这种数据在空间上表现出的复杂性、自相关性和变异性,使得解释变量对被解释变量的影响在不同区域之间可能是不同的,假定区域之间的经济行为在空间上具有异质性的差异可能更加符合现实。空间变系数回归模型(Spatial Varying-Coefficient Regression Model)中的地理加权回归模型(Geographical Weighted Regression,GWR)是一种解决这种问题的有效方法。 、空间计量主要命令

spmat 生成空间权重矩阵

spatwmat 用于定义空间权重矩阵

spatgsa 用于全局空间自相关检验

gsa表示global spatial autocorrelation

spatlsa 进行局部空间自相关检验

lsa表示local spatial autocorrelation

spatcorr 考察空间自相关指标对距离临界值d的依赖性

spatdiag 针对ols回归结果,考察是否存在空间效应

spatreg 估计空间滞后与空间误差模型

空间面板主要命令为:help xsmle

Spatial Autoregressive (SAR) model

xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(sar) [SAR_options]

Spatial Durbin (SDM) model

xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(sdm) [SDM_options]

Spatial Autocorrelation (SAC) model

xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) emat(name) model(sac) [SAC_options]

Spatial Error (SEM) model

xsmle depvar [indepvars] [if] [in] [weight] , emat(name) model(sem) [SEM_options]

Generalized Spatial Panel Random Effects (GSPRE) model

xsmle depvar [indepvars] [if] [in] [weight] , wmat(name) model(gspre) [emat(name) GSPRE_options]

英文SearchEngineMarketing,我们通常简称为“SEM”。就是根据用户使用搜索引擎的方式利用用户检索信息的机会尽可能将营销信息传递给目标用户。简单来说,搜索引擎就是基于搜索引擎平台的网络营销,利用人们对搜索引擎的依赖和使用习惯,在人们检索信息的时候将信息传递给目标客户。搜索引擎营销的基本思想是让用户发现信息,并通过点击进入网站或网页,进一步了解所需要的信息。

搜索引擎营销的基本思想是让用户发现信息,并通过(搜索引擎)搜索点击进入网站/网页进一步了解他所需要的信息。在介绍搜索引擎策略时,一般认为,搜索引擎优化设计主要目标有2个层次:被搜索引擎收录、在搜索结果中排名靠前。这已经是常识问题,简单来说SEM所做的就是以最小的投入在搜索引擎中获最大的访问量并产生商业价值。多数网络营销人员和专业服务商对搜索引擎的目标设定也基本处于这个水平。但从实际情况来看,仅仅做到被搜索引擎收录并且在搜索结果中排名靠前还很不够,因为取得这样的效果实际上并不一定能增加用户的点击率,更不能保证将访问者转化为顾客或者潜在顾客,因此只能说是搜索引擎营销策略中两个最基本的目标。

计算机语言中的var:Pascal:var在Pascal作为程序的保留字,用于定义变量。var是variable(变量,可变物)的简写。在多种计算机编程语言中,var被用作定义变量的关键字,在一些操作系统中也能见到它的身影。

基本思想

VaR按字面的解释就是“处于风险状态的价值”,即在一定置信水平和一定持有期内,某一金融工具或其组合在未来资产价格波动下所面临的最大损失额。JP.Morgan定义为:VaR是在既定头寸被冲销(beneutraliged)或重估前可能发生的市场价值最大损失的估计值;而Jorion则把VaR定义为:“给定置信区间的一个持有期内的最坏的预期损失”。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/448509.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-31
下一篇2023-05-31

发表评论

登录后才能评论

评论列表(0条)

    保存