( 1) 粉煤灰的颜色
粉煤灰一般呈灰色粉末状,其颜色可以有深浅变化,这种变化不仅与粉煤灰的含水率、细度和含碳量 ( 主要以残余炭粒、半焦和煤粒形式存在) 有关,而且还与粉煤灰的化学成分有关。通常情况下,含水率越高、颗粒越粗、含碳量增大均可导致粉煤灰的颜色加深,特别是含碳量,它们影响粉煤灰的整体颜色。粉煤灰中含碳量的多少可以通过粉煤灰的烧失量来衡量,烧失量越大表明含碳量越高,粉煤灰的颜色就越深。粉煤灰的化学成分不同,也会造成粉煤灰颜色上的差异,化学成分主要影响粉煤灰颗粒本身的颜色。一般而言,钙含量较高的粉煤灰颜色浅,而铁含量较高的粉煤灰颜色深,粉煤灰中铁含量的增加还可以使粉煤灰出现褐色特征。氧化铝含量的增加也会使粉煤灰颜色变浅。
准格尔电厂的粉煤灰颜色呈浅灰色,主要原因是粉煤灰中铝含量较高,碳含量较低,粉煤灰的烧失量为 2. 1%。根据粉煤灰碳含量与烧失量之间的关系 ( 钱觉时,2002) ,推定准格尔电厂粉煤灰的碳含量应小于 2%,较低的碳含量也表明锅炉的燃烧效率较高。
( 2) 粉煤灰的颗粒形貌
由于粉煤灰的颗粒粒径一般在 0. 5 ~300 μm 的范围内,且大多数颗粒处于 50 μm 之下,为进一步观察粉煤灰的颗粒形貌就必须借助光学显微镜和电子显微镜,这方面的研究文献相当丰富。由于电子显微镜比光学显微镜具有更高的分辨率,后期的研究主要集中在扫描电子显微镜 ( SEM) 和透射电子显微镜 ( TEM) 方面 ( Vassilev 等,1996) ,最新的研究采用了原子力显微镜 ( AFM) 来研究微珠表面起伏与燃烧温度的关系 ( Mishra 等,2003) 。
Fisher ( 1978) 曾在早期利用单偏光显微镜研究粉煤灰颗粒的微观形貌,并识别出 11种显微颗粒类型: ①无定形、透明②无定形、不透明③无定形、透明与不透明混合型④圆形、多孔、透明⑤圆形、多孔、透明与不透明混合型⑥不透明、棱角状⑦透明、空心球⑧透明、子母珠⑨透明、实心球⑩不透明、实心球瑏瑡透明、内部或表面有析晶。Ramsden 等 ( 1982) 利用光学显微镜、电子显微镜和电子探针识别出 7 种显微颗粒类型: ①未融矿物碎屑 ( 主要为石英) ②不规则海绵状颗粒③多孔状玻璃体( 以不规则粒状和空心微珠形式存在) ④实心微珠⑤树枝状氧化铁颗粒 ( 多为球形,含不等量玻璃质) ⑥结晶态氧化铁颗粒 ( 多为球形,含极少量玻璃质) ⑦未燃尽炭粒。作者还将上述颗粒的化学成分标在 SiO2-Al2O3-其他氧化物三元相图中,大体分析了这几种颗粒类型与煤中矿物间的关系。
我国学者梁天仁 ( 1984) 主要依据反光显微镜下的特征,对粉煤灰的显微结构进行了研究,首先按物质成分分为硅铝质、铁质和炭粒,然后主要根据颗粒形态分出 7 种类型。王运泉等 ( 1998) 采用光学显微镜和扫描电子显微镜从岩石学角度对粉煤灰进行了微观研究,将粉煤灰颗粒组分分为无机和有机两大类。无机部分来源于煤中矿物质,可进一步细分为玻璃微珠、磁铁微珠、不定形颗粒、碎屑石英和莫来石有机部分则包括煤粒和残炭两个亚组 ( 表 3. 1) 。
表 3. 1 燃煤飞灰显微组分分类
( 据王运泉等,1998)
孙俊民等 ( 2001) 利用光学显微镜和扫描电子显微镜对不同燃煤煤种和锅炉类型电厂飞灰进行了观察研究,建立了燃煤飞灰显微颗粒的系统分类方案,并揭示出各类颗粒的显微结构特征。首先根据物质成分将飞灰分出硅铝质、铁质、钙质和炭粒 4 个组,然后根据微观形貌和内部结构分出 16 种显微颗粒类型 ( 表 3. 2) ,发现空心微珠和子母珠是飞灰中普遍存在的显微颗粒类型,不仅广泛分布于不同粒级的硅铝质颗粒中,而且常见于钙质和铁质颗粒中。
表 3. 2 燃煤飞灰的显微颗粒分类
( 据孙俊民等,2001)
钱觉时 ( 2002) 根据沈旦申 ( 1989) 和 Rohatgi 等 ( 1995) 其他研究者对粉煤灰颗粒的分类和特征描述归纳出了一个综合分类 ( 表 3. 3) 。这一分类首先将粉煤灰颗粒分为珠状颗粒、渣状颗粒、钝角颗粒、碎屑颗粒、粘聚颗粒五大类,然后将珠状颗粒进一步细分为漂珠、空心沉珠、复珠 ( 子母珠) 、密实微珠和富铁微珠 5 种,将渣状颗粒细分为海绵状玻璃渣和炭粒 2 种,并详细描述了各种颗粒的形貌、粒径、密度以及各种颗粒的性能和所占的百分比。
从上述研究可以看出,不同学者的分类大同小异,而且整体上表现出粉煤灰是以珠状颗粒为主的特征。因影响粉煤灰颗粒形成的因素众多和研究手段的不同,使得粉煤灰分类方案也存在一定的差异,特别是粉煤灰中的残炭通常已转变为半焦或焦炭,严格意义上讲应归属于矿物。在所有研究的粉煤灰中,都缺乏 Al2O3含量高达50%左右的粉煤灰这一特定类型。
我们采用带能谱分析的场发射扫描电镜 ( FESEM-EDX) 详细观察了准格尔电厂粉煤灰的显微结构及其类型,并用扫描电镜 ( SEM) 对人工分选的磁珠进行观察,可以发现,准格尔电厂粉煤灰中各种类型的颗粒均可见到 ( 图 3. 4,图 3. 5) ,但整体以珠状颗粒为主,珠状颗粒在细粒粉煤灰中最为常见。将飞灰与底灰相比,飞灰中的珠状颗粒明显高于底灰,底灰中的炭粒和不规则颗粒较多,而且底灰的粒度明显高于飞灰。在准格尔电厂粉煤灰中我们还发现,无论在底灰还是飞灰中,都存在一种杆状的颗粒类型,杆状颗粒表面可以呈现瘤状突起,也可以表现出相对的光滑。另外,粘聚颗粒也比首钢电厂粉煤灰中常见。现将观察结果叙述如下:
表 3. 3 粉煤灰中颗粒的分类和特征
( 据钱觉时,2002)
图 3. 4 准格尔电厂粉煤灰整体特征
高铝粉煤灰特性及其在合成莫来石和堇青石中的应用
图 3. 5 准格尔电厂粉煤灰类型
( 1) 珠状颗粒
珠状颗粒主要是煤中无机组分在高温下软化、熔融,尔后急剧冷却而形成的固相颗粒,由于熔融体的表面张力作用使得表面能达到最小,致使煤粉颗粒变化为球状。这些熔化的球状颗粒将会在煤粉燃烧过程中产生的 CO、CO2、SO2或水蒸气中漂浮,当这些颗粒离开火焰区域后将会迅速移动到温度较低的区域,然后淬火形成固体的玻璃相。淬火的速度取决于这些颗粒的大小,大颗粒移动缓慢将使得颗粒内部或表面形成晶相物质。尽管有些熔体内包裹的气体可能会使球体爆裂,但一般情况下,这些球状颗粒都能离开火焰区淬火形成中空厚壁的珠状颗粒 ( 钱觉时,2002) 。
在准格尔电厂粉煤灰中,珠状颗粒占粉煤灰颗粒类型的绝大多数,特别是在细颗粒( 一般小于 50 μm) 中所占比例更大,无论何种化学成分的颗粒,这一球状或似球状或近似椭球状的颗粒在粉煤灰中都是常见类型。有薄壁空心球状的漂珠,其壁厚与直径之比在10% 左右,这种颗粒的数量相对较少也有厚壁空心的沉珠,其壁厚与直径之比在 30%左右,这种颗粒的数量相对较多另外还有为数众多、内部密实的实心微珠。在这些珠状颗粒中,其表面有光滑者也有比较粗糙者。细小的微珠大部分外表光滑,不管其成分是铝硅质还是钙质直径较大的微珠大部分外表粗糙,并且以铁质微珠为主有些珠状颗粒内部还包含有更小的玻璃微珠,通常称之为复珠或子母珠。也见有部分珠状颗粒表面粘附有更小的微珠。
将粉煤灰中的磁性颗粒进行分选,放于 SEM 下观察,可以发现,磁性颗粒中既有实心微珠也有复珠,磁性微珠大小不一,外表粗糙者居多,但也有少部分较小的磁珠外表光滑。在磁珠的表面可以看到磁珠冷却时析出的微小晶体。
( 2) 渣状颗粒
渣状颗粒可分为海绵状玻璃渣和炭粒。海绵状玻璃渣多表现为结构疏松、不规则的多孔颗粒,粒径较粗 ( 一般大于 50 μm) ,在飞灰和底灰中都存在,并且在底灰中的数量明显高于飞灰。海绵状玻璃渣上的孔洞直径大小不一,分布也不均匀,其化学成分多为铝硅质。海绵状玻璃体的形成通常是因燃烧温度不高,或在火焰中停留时间过短,或因灰分熔点较高,以致这些灰渣没有达到完全熔融程度。准格尔电厂粉煤灰中的海绵状玻璃渣数量较多,显然与煤灰中 Al2O3含量较高导致灰熔点较高有关。
炭粒既可存在于飞灰也可存在于底灰之中。炭粒的形状也有多种,既有多孔球状、海绵状,也有不规则状,炭粒的性质既有各向同性,也有各向异性 ( Vassilev 等,2004b) 。据研究,炭粒 ( 残炭) 的类型和丰度主要与煤岩组成、变质程度 ( 郑雨寿,1990,1992)和燃烧方式 ( Gibbins 等,1993) 有关。空心炭和网状炭源自镜质组,镜质组比惰质组有较高的挥发分产率,在高温热解过程中会出现不同程度的膨胀、塑性变形,甚至流动,同时不断释放挥发分,因而产生大量的气孔。结构炭和未熔炭主要源自惰质组,它们在加热过程中既不变形也不软化,挥发分产率很低,未经塑性变化过程,燃烧时可导致炭壁即细胞壁逐渐断裂,所以由惰质组形成的炭粒几乎没有气孔,同时也不同程度地保存有原惰质组的形态、结构乃至光性特征。
研究还表明,空心炭和网状炭在燃烧时,热化学反应首先发生在挥发分析出所产生的气孔中,随着燃烧的进行,表现出密度不断变化、直径不变的燃烧特征,即服从所谓的“等直径”燃烧方式。而结构炭和未熔炭则表现出从颗粒表面向内部燃烧,即密度不变、直径逐渐缩小的燃烧过程,即服从所谓的 “等密度”燃烧方式 ( 王运泉等,1998) 。
准格尔电厂燃煤中的有机组分主要是镜质组和惰质组,所以这 4 种炭粒类型均有发现,但以结构炭、未熔炭和空心炭为主,空心炭的比例相对较高。结构炭和未熔炭与煤中惰质组含量有关,空心炭与煤中镜质组含量有关。不管何种类型的炭粒,它们在底灰中的含量都明显高于飞灰,而且底灰中的炭粒直径较大,多在 200 μm 以上,最大可达 1 mm。
( 3) 钝角颗粒
按表 3. 3 的分类描述,钝角颗粒是指未熔融或部分熔融的颗粒物,且主要成分为石英。这种颗粒在准格尔粉煤灰中有所发现,但数量不多,这与燃煤中石英含量本身数量较少有关。
( 4) 碎屑颗粒
碎屑颗粒大多是煤中未燃烧或不完全燃烧而遗留下来的矿物颗粒,它们往往保留或部分保留有原来矿物颗粒的形态。在准格尔电厂粉煤灰中这种颗粒类型的数量相对较多,而且主要存在于底灰中,这与煤中黏土矿物含量较多有关。
( 5) 粘聚颗粒
粘聚颗粒为粉煤灰中各种颗粒的粘聚体,这一现象在准格尔电厂粉煤灰中也比较常见,利用 SEM 可以观察到有大小不同的珠状颗粒交熔在一起,也可以观察到不规则颗粒与珠状颗粒或不规则颗粒之间的部分交熔现象。这主要是因为熔融或半熔融颗粒,或颗粒尚未完全冷却时互相碰撞在一起,粘连后再完全冷却而形成。准格尔电厂粉煤灰中这类颗粒比较常见的原因,还与煤灰中 Al2O3含量较高、杂质含量 ( 除 SiO2和 Al2O3之外的其他氧化物) 较低而导致的熔体黏度增高有关。
( 6) 杆状颗粒
在准格尔电厂粉煤灰中,首次发现有部分杆状颗粒存在,不管在底灰还是在飞灰中均可见到,尽管数量不多,但这种特殊形态的颗粒在以往的文献中都未见报道。杆状颗粒表面可以呈现瘤状突起也可以表现出相对的光滑,其直径、长短不尽相同,经 EDX 分析,其化学成分主要是碳。根据形状和化学成分推断,这些杆状颗粒是丝质体的碎片,但部分杆状颗粒表面瘤状突起的成因还不清楚,可能是液态微珠的变形附着物。
粉煤灰中一般含50%一80%的空心玻璃微珠,其细度为0.3一200&microm,其中小于5&microm的占粉煤灰总量的20%。从粉煤灰中经分选出的空心微珠按其相对密度可分为沉珠和漂珠两种,相对密度大于1的称为沉珠:相对密度小于1的称为漂珠。沉珠与漂珠相比具有壁厚、容重大、强度高、耐磨性较好等特点。
粉煤灰空心微珠的主要化学成分是由硅、铝和铁的氧化物,以及少量的钙、镁、钾、纳等氧化物所组成。从成分上分析,原珠的二氧化硅(Si02)及三氧化二铝(Al2O3)的含量均比沉珠高;而漂珠的三氧化二铁(Fe2O3)、氧化钙(CaO)及二氧化钛(TiO2)均比沉珠的含量低。粉煤灰空心玻璃微珠具有颗粒细小、质轻、空心、隔热、隔音、耐高温.耐低温、耐磨、强度高及电绝缘好等优异的特性。由于这些特性,使得空心玻璃微珠成为一种多功能的材料.在下列几方面将得到越来越广泛的应用。 (1)可作为轻质、高强、耐火、防火、隔热保温等建筑材料的原材料;(2)是理想的塑料填料,可以提高塑料的耐高温性能;
(3)可作为石油精炼过程中的一种裂化催化剂;
(4)可与一些树脂配制成耐高压的海底仪器和潜艇外壳;
(5)能做电瓷及其他电气绝缘材料的原材料;
(6)可用于航天飞行器的复合表面材料;
(7)可作为高级喷涂材料和防火涂料的填充材料;
(8)可用于制汽车刹车片、军用摩擦片及石油钻机刹车块等制品;
(9)可用作聚乙烯人造革的填充剂;
(10)可用作人造大理石的填充料。
粉煤灰有三大效应,分别是“形态效应”、“活性效应”和“微集料效应”。
1、粉煤灰的“形态效应”
在显微镜下显示,粉煤灰中含有70%以上的玻璃微珠,粒形完整,表面光滑,质地致密。这种形态对混凝土而言,无疑能起到减水作用、致密作用和匀质作用,促进初期水泥水化的解絮作用,改变拌和物的流变性质、初始结构以及硬化后的多种功能,尤其对泵送混凝土,能起到良好的润滑作用。
2、粉煤灰的“活性效应”
因粉煤灰系人工火山灰质材料,所以又称之为“火山灰效应”。因粉煤灰中的化学成份含有大量活性SiO2及Al2O3,在潮湿的环境中与Ca(OH)2等碱性物质发生化学反应,生成水化硅酸钙、水化铝酸钙等胶凝物质,对粉煤灰制品及混凝土能起到增强作用和堵塞混凝土中的毛细组织,提高混凝土的抗腐蚀能力。
3、粉煤灰的“微集料效应”
粉煤灰中粒径很小的微珠和碎屑,在水泥石中可以相当于未水化的水泥颗粒,极细小的微珠相当于活泼的纳米材料,能明显的改善和增强混凝土及制品的结构强度,提高匀质性和致密性。
扩展资料:
火山灰效应的生态影响:
1、可能出现新物种
火山喷发会改变原有生态系统,其中可能出现新的物种。爆发区周围海洋生物死亡,之后,适应高温和二氧化硫的生物将大量繁衍,新的生态系统逐步建立,其中可能出现新的物种。地球历史表明,火山运动在地球格局形成中起到重要作用,无论是大陆形态的形成,还是地球的海洋和大气的形成,或者生命的起源,均和海底火山活动有关。
2、破坏生态系统平衡
火山灰大量存在,会造成海水酸碱度变化,这些变化会对整个生态环境造成很大影响。 对于白垩纪末恐龙消失的解释中,流行的观点是,陨石轰击地球,诱发大量火山喷发,造成黑云遮盖了大地,影响了植物光合作用,造成植物衰退,这当中影响首当其冲的是热带植物。
火山爆发形成的大量二氧化硫、二氧化碳等物质和大气中的水分相互作用,形成酸雨进入海洋。海水酸化将帮助利用碳酸钙生长的生物繁衍,其中包括叫做球石藻类的浮游植物、浮游有孔虫和翼足类软体动物,这些微小的生物是鱼类和海洋哺乳动物(包括某些鲸类)的主要食物来源,因此有可能改变整个生态系统平衡。
海水酸化对珊瑚礁的严重影响已经引起全球关注。全球珊瑚礁白化和海水酸化直接相关。火山灰和火山爆发释放出的适量磷酸盐、铁和其他具有营养作用和生物活性作用的痕量金属有利于浮游植物等的生长,但过量则可能在局部海域形成无生物区。
参考资料来源:百度百科-粉煤灰混凝土
百度百科-火山灰效应
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)