几种经典的网络服务器架构模型的分析与比较

几种经典的网络服务器架构模型的分析与比较,第1张

相比于传统的网络编程方式,事件驱动能够极大的降低资源占用,增大服务接待能力,并提高网络传输效率。 关于本文提及的服务器模型,搜索网络可以查阅到很多的实现代码,所以,本文将不拘泥于源代码的陈列与分析,而侧重模型的介绍和比较。使用 libev 事件驱动库的服务器模型将给出实现代码。 本文涉及到线程 / 时间图例,只为表明线程在各个 IO 上确实存在阻塞时延,但并不保证时延比例的正确性和 IO 执行先后的正确性;另外,本文所提及到的接口也只是笔者熟悉的 Unix/Linux 接口,并未推荐 Windows 接口,读者可以自行查阅对应的 Windows 接口。阻塞型的网络编程接口几乎所有的程序员第一次接触到的网络编程都是从 listen()、send()、recv()等接口开始的。使用这些接口可以很方便的构建服务器 /客户机的模型。我们假设希望建立一个简单的服务器程序,实现向单个客户机提供类似于“一问一答”的内容服务。图1. 简单的一问一答的服务器 /客户机模型我们注意到,大部分的 socket接口都是阻塞型的。所谓阻塞型接口是指系统调用(一般是 IO接口)不返回调用结果并让当前线程一直阻塞,只有当该系统调用获得结果或者超时出错时才返回。实际上,除非特别指定,几乎所有的 IO接口 (包括 socket 接口 )都是阻塞型的。这给网络编程带来了一个很大的问题,如在调用 send()的同时,线程将被阻塞,在此期间,线程将无法执行任何运算或响应任何的网络请求。这给多客户机、多业务逻辑的网络编程带来了挑战。这时,很多程序员可能会选择多线程的方式来解决这个问题。多线程服务器程序 应对多客户机的网络应用,最简单的解决方式是在服务器端使用多线程(或多进程)。多线程(或多进程)的目的是让每个连接都拥有独立的线程(或进程),这样任何一个连接的阻塞都不会影响其他的连接。 具体使用多进程还是多线程,并没有一个特定的模式。传统意义上,进程的开销要远远大于线程,所以,如果需要同时为较多的客户机提供服务,则不推荐使用多进程;如果单个服务执行体需要消耗较多的 CPU 资源,譬如需要进行大规模或长时间的数据运算或文件访问,则进程较为安全。通常,使用 pthread_create () 创建新线程,fork() 创建新进程。 我们假设对上述的服务器 / 客户机模型,提出更高的要求,即让服务器同时为多个客户机提供一问一答的服务。于是有了如下的模型。图2. 多线程服务器模型 在上述的线程 / 时间图例中,主线程持续等待客户端的连接请求,如果有连接,则创建新线程,并在新线程中提供为前例同样的问答服务。 很多初学者可能不明白为何一个 socket 可以 accept 多次。实际上,socket 的设计者可能特意为多客户机的情况留下了伏笔,让 accept() 能够返回一个新的 socket。下面是 accept 接口的原型: int accept(int s, struct sockaddr *addr, socklen_t *addrlen)输入参数 s 是从 socket(),bind() 和 listen() 中沿用下来的 socket 句柄值。执行完 bind() 和 listen() 后,操作系统已经开始在指定的端口处监听所有的连接请求,如果有请求,则将该连接请求加入请求队列。调用 accept() 接口正是从 socket s 的请求队列抽取第一个连接信息,创建一个与 s 同类的新的 socket 返回句柄。新的 socket 句柄即是后续 read() 和 recv() 的输入参数。如果请求队列当前没有请求,则 accept() 将进入阻塞状态直到有请求进入队列。 上述多线程的服务器模型似乎完美的解决了为多个客户机提供问答服务的要求,但其实并不尽然。如果要同时响应成百上千路的连接请求,则无论多线程还是多进程都会严重占据系统资源,降低系统对外界响应效率,而线程与进程本身也更容易进入假死状态。 很多程序员可能会考虑使用“线程池”或“连接池”。“线程池”旨在减少创建和销毁线程的频率,其维持一定合理数量的线程,并让空闲的线程重新承担新的执行任务。“连接池”维持连接的缓存池,尽量重用已有的连接、减少创建和关闭连接的频率。这两种技术都可以很好的降低系统开销,都被广泛应用很多大型系统,如 websphere、tomcat 和各种数据库等。 但是,“线程池”和“连接池”技术也只是在一定程度上缓解了频繁调用 IO 接口带来的资源占用。而且,所谓“池”始终有其上限,当请求大大超过上限时,“池”构成的系统对外界的响应并不比没有池的时候效果好多少。所以使用“池”必须考虑其面临的响应规模,并根据响应规模调整“池”的大小。 对应上例中的所面临的可能同时出现的上千甚至上万次的客户端请求,“线程池”或“连接池”或许可以缓解部分压力,但是不能解决所有问题。 总之,多线程模型可以方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型并不是最佳方案。下一章我们将讨论用非阻塞接口来尝试解决这个问题。使用select()接口的基于事件驱动的服务器模型 大部分 Unix/Linux 都支持 select 函数,该函数用于探测多个文件句柄的状态变化。下面给出 select 接口的原型: FD_ZERO(int fd, fd_set* fds) FD_SET(int fd, fd_set* fds) FD_ISSET(int fd, fd_set* fds) FD_CLR(int fd, fd_set* fds) int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout) 这里,fd_set 类型可以简单的理解为按 bit 位标记句柄的队列,例如要在某 fd_set 中标记一个值为 16 的句柄,则该 fd_set 的第 16 个 bit 位被标记为 1。具体的置位、验证可使用 FD_SET、FD_ISSET 等宏实现。在 select() 函数中,readfds、writefds 和 exceptfds 同时作为输入参数和输出参数。如果输入的 readfds 标记了 16 号句柄,则 select() 将检测 16 号句柄是否可读。在 select() 返回后,可以通过检查 readfds 有否标记 16 号句柄,来判断该“可读”事件是否发生。另外,用户可以设置 timeout 时间。 下面将重新模拟上例中从多个客户端接收数据的模型。图4.使用select()的接收数据模型 上述模型只是描述了使用 select() 接口同时从多个客户端接收数据的过程;由于 select() 接口可以同时对多个句柄进行读状态、写状态和错误状态的探测,所以可以很容易构建为多个客户端提供独立问答服务的服务器系统。图5.使用select()接口的基于事件驱动的服务器模型 这里需要指出的是,客户端的一个 connect() 操作,将在服务器端激发一个“可读事件”,所以 select() 也能探测来自客户端的 connect() 行为。 上述模型中,最关键的地方是如何动态维护 select() 的三个参数 readfds、writefds 和 exceptfds。作为输入参数,readfds 应该标记所有的需要探测的“可读事件”的句柄,其中永远包括那个探测 connect() 的那个“母”句柄;同时,writefds 和 exceptfds 应该标记所有需要探测的“可写事件”和“错误事件”的句柄 ( 使用 FD_SET() 标记 )。 作为输出参数,readfds、writefds 和 exceptfds 中的保存了 select() 捕捉到的所有事件的句柄值。程序员需要检查的所有的标记位 ( 使用 FD_ISSET() 检查 ),以确定到底哪些句柄发生了事件。 上述模型主要模拟的是“一问一答”的服务流程,所以,如果 select() 发现某句柄捕捉到了“可读事件”,服务器程序应及时做 recv() 操作,并根据接收到的数据准备好待发送数据,并将对应的句柄值加入 writefds,准备下一次的“可写事件”的 select() 探测。同样,如果 select() 发现某句柄捕捉到“可写事件”,则程序应及时做 send() 操作,并准备好下一次的“可读事件”探测准备。下图描述的是上述模型中的一个执行周期。图6. 一个执行周期 这种模型的特征在于每一个执行周期都会探测一次或一组事件,一个特定的事件会触发某个特定的响应。我们可以将这种模型归类为“事件驱动模型”。 相比其他模型,使用 select() 的事件驱动模型只用单线程(进程)执行,占用资源少,不消耗太多 CPU,同时能够为多客户端提供服务。如果试图建立一个简单的事件驱动的服务器程序,这个模型有一定的参考价值。 但这个模型依旧有着很多问题。 首先,select() 接口并不是实现“事件驱动”的最好选择。因为当需要探测的句柄值较大时,select() 接口本身需要消耗大量时间去轮询各个句柄。很多操作系统提供了更为高效的接口,如 linux 提供了 epoll,BSD 提供了 kqueue,Solaris 提供了 /dev/poll …。如果需要实现更高效的服务器程序,类似 epoll 这样的接口更被推荐。遗憾的是不同的操作系统特供的 epoll 接口有很大差异,所以使用类似于 epoll 的接口实现具有较好跨平台能力的服务器会比较困难。 其次,该模型将事件探测和事件响应夹杂在一起,一旦事件响应的执行体庞大,则对整个模型是灾难性的。如下例,庞大的执行体 1 的将直接导致响应事件 2 的执行体迟迟得不到执行,并在很大程度上降低了事件探测的及时性。图7. 庞大的执行体对使用select()的事件驱动模型的影响 幸运的是,有很多高效的事件驱动库可以屏蔽上述的困难,常见的事件驱动库有 libevent 库,还有作为 libevent 替代者的 libev 库。这些库会根据操作系统的特点选择最合适的事件探测接口,并且加入了信号 (signal) 等技术以支持异步响应,这使得这些库成为构建事件驱动模型的不二选择。下章将介绍如何使用 libev 库替换 select 或 epoll 接口,实现高效稳定的服务器模型。使用事件驱动库libev的服务器模型 Libev 是一种高性能事件循环 / 事件驱动库。作为 libevent 的替代作品,其第一个版本发布与 2007 年 11 月。Libev 的设计者声称 libev 拥有更快的速度,更小的体积,更多功能等优势,这些优势在很多测评中得到了证明。正因为其良好的性能,很多系统开始使用 libev 库。本章将介绍如何使用 Libev 实现提供问答服务的服务器。 (事实上,现存的事件循环 / 事件驱动库有很多,作者也无意推荐读者一定使用 libev 库,而只是为了说明事件驱动模型给网络服务器编程带来的便利和好处。大部分的事件驱动库都有着与 libev 库相类似的接口,只要明白大致的原理,即可灵活挑选合适的库。) 与前章的模型类似,libev 同样需要循环探测事件是否产生。Libev 的循环体用 ev_loop 结构来表达,并用 ev_loop( ) 来启动。 void ev_loop( ev_loop* loop, int flags ) Libev 支持八种事件类型,其中包括 IO 事件。一个 IO 事件用 ev_io 来表征,并用 ev_io_init() 函数来初始化: void ev_io_init(ev_io *io, callback, int fd, int events) 初始化内容包括回调函数 callback,被探测的句柄 fd 和需要探测的事件,EV_READ 表“可读事件”,EV_WRITE 表“可写事件”。 现在,用户需要做的仅仅是在合适的时候,将某些 ev_io 从 ev_loop 加入或剔除。一旦加入,下个循环即会检查 ev_io 所指定的事件有否发生;如果该事件被探测到,则 ev_loop 会自动执行 ev_io 的回调函数 callback();如果 ev_io 被注销,则不再检测对应事件。 无论某 ev_loop 启动与否,都可以对其添加或删除一个或多个 ev_io,添加删除的接口是 ev_io_start() 和 ev_io_stop()。 void ev_io_start( ev_loop *loop, ev_io* io ) void ev_io_stop( EV_A_* ) 由此,我们可以容易得出如下的“一问一答”的服务器模型。由于没有考虑服务器端主动终止连接机制,所以各个连接可以维持任意时间,客户端可以自由选择退出时机。图8. 使用libev库的服务器模型 上述模型可以接受任意多个连接,且为各个连接提供完全独立的问答服务。借助 libev 提供的事件循环 / 事件驱动接口,上述模型有机会具备其他模型不能提供的高效率、低资源占用、稳定性好和编写简单等特点。 由于传统的 web 服务器,ftp 服务器及其他网络应用程序都具有“一问一答”的通讯逻辑,所以上述使用 libev 库的“一问一答”模型对构建类似的服务器程序具有参考价值;另外,对于需要实现远程监视或远程遥控的应用程序,上述模型同样提供了一个可行的实现方案。 总结 本文围绕如何构建一个提供“一问一答”的服务器程序,先后讨论了用阻塞型的 socket 接口实现的模型,使用多线程的模型,使用 select() 接口的基于事件驱动的服务器模型,直到使用 libev 事件驱动库的服务器模型。文章对各种模型的优缺点都做了比较,从比较中得出结论,即使用“事件驱动模型”可以的实现更为高效稳定的服务器程序。文中描述的多种模型可以为读者的网络编程提供参考价值。

服务器分塔式、机架式和刀片式这三种结构来划分服务器,服务器的外形为什么会有这样的划分呢?主要原因就是具体的应用环境不同,塔式服务器长得跟我们平时用的台式机一样,占用空间比较大,一般是一些小型企业自己使用自己维护;而机架式服务器长得就像卧着的台式机,可以一台一台的放到固定机架上,因此而得名,它可以拿去专业的服务器托管提供商那里进行托管,这样每年只需支付一定的托管费,就免去了自己管理服务器的诸多不便;而刀片服务器是近几年才比较流行的一种服务器架构,它非常薄,可以一片一片的叠放在机柜上,通过群集技术进行协同运算,能够处理大量的任务,特别适合分布式服务,如作为WEB服务器。

看完上面的简单介绍,相信各位对这3种服务器已经有个基本的认识了,下面我们就来一一细说,为大家做更详细的讲解:

什么是塔式服务器:

塔式服务器应该是大家见得最多,也最容易理解的一种服务器结构类型,因为它的外形以及结构都跟我们平时使用的立式PC差不多,当然,由于服务器的主板扩展性较强、插槽也多出一堆,所以个头比普通主板大一些,因此塔式服务器的主机机箱也比标准的ATX机箱要大,一般都会预留足够的内部空间以便日后进行硬盘和电源的冗余扩展。

由于塔式服务器的机箱比较大,服务器的配置也可以很高,冗余扩展更可以很齐备,所以它的应用范围非常广,应该说目前使用率最高的一种服务器就是塔式服务器。我们平时常说的通用服务器一般都是塔式服务器,它可以集多种常见的服务应用于一身,不管是速度应用还是存储应用都可以使用塔式服务器来解决。

就使用对象或者使用级别来说,目前常见的入门级和工作组级服务器基本上都采用这一服务器结构类型,一些部门级应用也会采用,不过由于只有一台主机,即使进行升级扩张也有个限度,所以在一些应用需求较高的企业中,单机服务器就无法满足要求了,需要多机协同工作,而塔式服务器个头太大,独立性太强,协同工作在空间占用和系统管理上都不方便,这也是塔式服务器的局限性。不过,总的来说,这类服务器的功能、性能基本上能满足大部分企业用户的要求,其成本通常也比较低,因此这类服务器还是拥有非常广泛的应用支持。

什么是机架式服务器:

作为为互联网设计的服务器模式,机架服务器是一种外观按照统一标准设计的服务器,配合机柜统一使用。可以说机架式是一种优化结构的塔式服务器,它的设计宗旨主要是为了尽可能减少服务器空间的占用,而减少空间的直接好处就是在机房托管的时候价格会便宜很多。

为什么说机架式服务器是作为为互联网设计的服务器模式?

正如大家所知,很多专业网络设备都是采用机架式的结构(多为扁平式,活像个抽屉),如交换机、路由器、硬件防火墙这些。这些设备之所以有这样一种结构类型,是因为他们都按国际机柜标准进行设计,这样大家的平面尺寸就基本统一,可把一起安装在一个大型的立式标准机柜中。这样做的好处非常明显:一方面可以使设备占用最小的空间,另一方面则便于与其它网络设备的连接和管理,同时机房内也会显得整洁、美观。

机架服务器的宽度为19英寸,高度以U为单位(1U=1.75英寸=44.45毫米),通常有1U,2U,3U,4U,5U,7U几种标准的服务器。机柜的尺寸也是采用通用的工业标准,通常从22U到42U不等;机柜内按U的高度有可拆卸的滑动拖架,用户可以根据自己服务器的标高灵活调节高度,以存放服务器、集线器、磁盘阵列柜等网络设备。服务器摆放好后,它的所有I/O线全部从机柜的后方引出(机架服务器的所有接口也在后方),统一安置在机柜的线槽中,一般贴有标号,便于管理。

现在很多互联网的网站服务器其实都是由专业机构统一托管的,网站的经营者其实只是维护网站页面,硬件和网络连接则交给托管机构负责,因此,托管机构会根据受管服务器的高度来收取费用,1U的服务器在托管时收取的费用比2U的要便宜很多,这就是为什么这种结构的服务器现在会广泛应用于互联网事业。

还有一点要说的是机架式服务器因为空间比塔式服务器大大缩小,所以这类服务器在扩展性和散热问题上受到一定的限制,配件也要经过一定的筛选,一般都无法实现太完整的设备扩张,所以单机性能就比较有限,应用范围也比较有限,只能专注于某一方面的应用,如远程存储和Web服务的提供等,但由于很多配件不能采用塔式服务器的那种普通型号,而自身又有空间小的优势,所以机架式服务器一般会比同等配置的塔式服务器贵上20-30%。至于空间小而带来的扩展性问题,也不是完全没有办法解决,由于采用机柜安装的方式,因此多添加一个主机在机柜上是件很容易的事,然后再通过服务器群集技术就可以实现处理能力的增强,如果是采用外接扩展柜的方式也能实现大规模扩展,不过由于机架式服务器单机的性能有限,所以扩展之后也是单方面的能力得到增倍,所以这类服务器只是在某一种应用种比较出色,大家就把它划为功能服务器,这种服务器针对性较强,一般无法移做它用。

什么是刀片服务器?

对于企业和网络信息提供商来说,无限增长的数据必须集中存储和处理,于是未来的网络发展呈现出集中计算的趋势。集中管理模式与现有的分散管理模式,对服务器提出了新的要求:节约空间、便于集中管理、易于扩展和提供不间断的服务,成为对下一代服务器的新要求。

作为网络重要组成部分的服务器来说,性能已不仅仅是评价服务器的唯一指标了,用户更关心的是符合自己实际需要的产品。目前服务器集群已经在市场上得以广泛应用,而新一代机架式服务器也开始进入市场,为用户提供了更多的选择。但是随着网络向更深层面发展,下一代服务器将会是BladeServer(刀片服务器)。

刀片服务器是一种HAHD(HighAvailabilityHighDensity,高可用高密度)的低成本服务器平台,是专门为特殊应用行业和高密度计算机环境设计的。其中每一块"刀片"实际上就是一块系统主板。它们可以通过本地硬盘启动自己的操作系统,如WindowsNT/2000、Linux、Solaris等等,类似于一个个独立的服务器。在这种模式下,每一个主板运行自己的系统,服务于指定的不同用户群,相互之间没有关联。不过可以用系统软件将这些主板集合成一个服务器集群。在集群模式下,所有的主板可以连接起来提供高速的网络环境,可以共享资源,为相同的用户群服务。在集群中插入新的"刀片",就可以提高整体性能。而由于每块"刀片"都是热插拔的,所以,系统可以轻松地进行替换,并且将维护时间减少到最小。值得一提的是,系统配置可以通过一套智能KVM和9个或10个带硬盘的CPU板来实现。CPU可以配置成为不同的子系统。一个机架中的服务器可以通过新型的智能KVM转换板共享一套光驱、软驱、键盘、显示器和鼠标,以访问多台服务器,从而便于进行升级、维护和访问服务器上的文件。

克服服务器集群的缺点

作为一种实现负载均衡的技术,服务器集群可以有效地提高服务的稳定性和/或核心网络服务的性能,还可以提供冗余和容错功能。理论上,服务器集群可以扩展到无限数量的服务器。无疑,服务器集群和RAID镜像技术的诞生为计算机和数据池的Internet应用提供了一个新的解决方案,其成本远远低于传统的高端专用服务器。

但是,服务器集群的集成能力低,管理这样的集群使很多IDC都非常头疼。尤其是集群扩展的需求越来越大,维护这些服务器的工作量简直不可想像,包括服务器之间的内部连接和摆放空间的要求。这些物理因素都限制了集群的扩展。“高密度服务器”--BladeServer的出现适时地解决了这样的问题。高密度服务器内置了监视器和管理工具软件,可以几十个甚至上百个地堆放在一起。配置一台高密度服务器就可以解决一台到一百台服务器的管理问题。如果需要增加或者删除集群中的服务器,只要插入或拔出一个CPU板即可。就这个意义上来说,BladeServer从根本上克服了服务器集群的缺点。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/452944.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-02
下一篇2023-06-02

发表评论

登录后才能评论

评论列表(0条)

    保存