在这个数量级之下,需要考虑的问题不仅仅是高吞吐,低延时,保证数据的一致性,还要考虑如何能节省流量,容易扩展,容错等等。下面我们就来看下Haystack是怎样满足这些分布式系统的要素的。
图片存储系统的最大特点是数据只写一次,读取频繁,不会修改,很少删除。Facebook 一开始的存储系统是基于NFS的NAS(Network Attached Storage), 但这种基于 POSIX 的文件系统无法支撑如此大的负载。其中主要的问题在于在图片寻址的过程中会产生过多的磁盘操作。
我们知道从传统文件系统里面读取一个文件需要至少三次磁盘操作,第一次从硬盘中读取目录的 metadata 到内存中,然后读取inode到内存,最后才从磁盘中读取文件内容。
再者这些metadata里面包含了大量比如权限控制这些对于图片存储系统来说无用的信息,也浪费了大量的磁盘空间。当像图片这样的静态资源服务出现瓶颈的时候,自然就会想到使用 CDN (Content Delivery Networks) 系统。在传统的设计中,一个图片的 HTTP 请求发送后, 如果 CDN 有这个资源的缓存,就会立马返回,反之 ,CDN 会将根据请求的 URL 从存储系统里面读取图片,更新缓存,然后再返回。在这样的设计中,CDN 确实可以很有效地处理热点图片的请求。
但像 Facebook 这样的社交网络中,有大量的请求是针对那些非热点或者老内容的,用户在请求那些长尾 (long tail) 内容时将没有优化。当然,有些同学会说,那我可以将所有的图片都缓存到 CDN,那确实会解决这个问题,但将会极大地增加资源的开销。
为了减少那些直接 hit 到存储系统的请求的磁盘操作,他们想到在第一次读取文件的时候把filename到 file handle 的映射缓存到内存,在下一次读取文件的时候,会调用自定义的open_by_filehandle来减少磁盘操作,但这对于long tail的读取问题依然存在,因为这些文件的映射关系没有提前放在内存中。
于是,Facebook 决定从头研发图片存储系统,从前面我们可以看出,Haystack 的核心任务就是在处理每一次的请求中尽可能地减少磁盘操作。我们先来描述下 Haystack 读取和上传图片流程是怎样的,然后再来看其中的细节是如何处理的。
当发起一次图片读取请求的时候会通过一个事先构建好的 URL
http://///这个 URL 实际上显示出了访问的顺序,先从外部 CDN 读取,如果没有,访问内部 Cache,如果还是没有,就直接访问 Store Machine.(URL最后一部分提供了图片的唯一标识)
用户上传图片的时候先会上传到 web 服务器, 然后服务器从Directory中找到一个可写的physical volume,最后服务器会给这个图片生成一个唯一ID, 然后写入到这个logical volume 所对应的所有physical volume中。
上面的过程中出现了几个陌生的名词,别着急,我们一个个来看。我们先来介绍 Haystack 的三个主要组件:
Store,Directory,Cache.
Store 是核心组件,负责图片的存储。Store 的容量决定了这个存储系统的容量,整个 Store 组件由很多个 store machine 组成,store machine 的容量又由一系列的 physical volume 决定。
例:要提供 10TB容量,我们可分摊到 100 个 physical volume,每个 physical volume 提供 100 GB 的容量。这时候有的同学会问,那么数据冗余是怎么解决的呢?Haystack 借鉴了普通硬盘中的 logical volume 的概念,将不同机器上的多个 physical
volume 组成了一个虚拟的 logical volume。
当存储一张图片的时候,实际上是存储到了 logical volume 对应的所有 physical volume中。它们之间的映射关系连同其它的metadata都存储在 Directory组件中。每个physicalvolume 中都存储了上百万张图片,可以把它想象成一个巨大的 append-only 文件,然后通过 offset 来访问文件。
我们来详细看下这个文件到底是如何存放的,如何来达到减少磁盘操作目的的。对于每个这样超大的文件,都由一个 superblock 和一系列的 needles 组成,每个 needle 就是每张图片的信息。看下下面这张图,它的结构就一目了然了。
每个needle包含的细节信息有图片ID,图片大小,图片数据等等,还会有数据校验的属性。每个 store machine 都有若干个physical volume大文件, 为了提高检索needles 的速度,在内存里为每个physical volume都维护了一张图片I 到needle之间的映射表。
当store machine接收到读取请求时,首先从内存映射表中找到相应的metadata, 然后通过offset从硬盘中读取到整个needle, 通过数据校验后返回。如果接收到的是上传请求,会把组织好的needle追加到所有对应的physical volume文件中,并且更新内存里的映射表。如果是删除操作的话,我们注意到下图中有个Flags标志位其实就是用来标记是否是删除的状态,这样一来就很简单,直接在这个位置标记好,系统会在后面执行compaction 操作回收这些空间。
讲到这里,一个正常流程的存储过程已经很清楚了。这时候我们就需要考虑分布式系统一个必不可少的特性:容错性。当一个 store machine 宕机的时候,理论上我们可以读取所有的 physical volume 来重新构建内存映射表,但这就需要从磁盘重新读取 TB 级别的数据,显然是非常耗时和不高效的。为了解决这个问题,每个 store machine 为每个 physical volume 都维护了一个索引文件。这个索引文件类似于游戏中的存档点 (checkpoint),它的结构和 physical volume 文件类似,保存了查找每个 needle 所需的属性。为了性能,索引文件是异步更新的(写的时候异步更新,删的时候压根不会更新),这就会带来一个问题:索引文件有可能不是最新的。之前我们提到过,physical volume 文件是一个 append-only 的文件,索引文件也是。所以我们只需要在重启 store machine 的时候,从后向前扫描 physical volume 文件找到那几个没有被索引的文件,加到索引里去就行了。对于被删除的文件,在真正读取完整 needle 数据的时候,通过检查删除标志位来更新内存映射表。
我们之前提到可以使用 CDN 来缓解系统压力,但它无法很好地解决非热点图片的问题,并且如果 CDN 节点出现故障的话,没有 Cache 这一层会对底层的存储系统 Store 产生巨大的压力。Cache 组件主要缓存了最近上传的图片,它的概念很简单,实际上是一个分布式 hash table,通过图片的 ID 为 key 可以找到对应的数据。Cache 接收从 CDN 或者浏览器直接发来的 HTTP 请求,但只有在以下两个条件都满足的情况下才会缓存图片:
1) 请求来自用户浏览器而不是来自 CDN
2) 请求的 store machine 是可写的
这听上去有些费解,条件 1 的原因是如果一个请求在 CDN 缓存中 miss 其实也会在 Cache 中 miss (如果一张图片成为热门的话,那也能在 CDN 找到),条件 2 的原因则是避免让可写的 store machine 进行大量读操作,因为图片通常在刚刚上传后会被大量读取,文件系统通常在只读或者只写而不是既读又写的时候性能比较好。
如果没有 Cache 的话,可写的 store machine 将会同时处理写操作以及大量的读操作,会导致性能的急剧下降。
现在我们只剩下 Directory 组件没有讲了。除了之前我们提到的存储了 physical volume 到 logical volume 的映射关系以及图片 ID 到 logical physical 的映射关系,它还提供负载均衡服务以及为每个操作选择具体的 volume (因为写操作的对象是 logical volume,读操作的对象是 physical volume), 它还决定了一个请求是被 CDN 处理还是被 Cache 处理。Directory 还可以标记逻辑卷的状态,在运维需要或者空间满了的时候可以标记为只读状态。当往 Store 加新机器的时候,这些机器就会标记成可写的,只有可写的机器才能接受图片上传请求。这里有一个细节需要注意,图片 ID 到 logical physical 的映射表肯定无法存放在单机内存,文章中也没有交代具体实现。我们猜想可以使用 MySQL 分片集群和加上 Memcached 集群来实现。总的来讲,Directory 实际上根据 metadata,然后结合各种策略,实现了整个系统的调度器。
本文描述了 Haystack 图片存储系统的主要脉络,当然还有许多细节没有提到,比如整个系统的容错机制,如何实现批量写操作等等。经过这几年的发展,我们相信 Haystack 肯定也进行了更多的优化,现在一些开源的分布式存储系统也被应用到实际的生产系统中,比如淘宝的 TFS,MooseFS 等等。我们会在后续的文章中比较这些系统之间的异同,总结出解决其中典型问题的通用方法。
1.简介
分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。分布式文件系统的设计基于客户机/服务器模式。一个典型的网络可能包括多个供多用户访问的服务器。另外,对等特性允许一些系统扮演客户机和服务器的双重角色。例如,用户可以“发表”一个允许其他客户机访问的目录,一旦被访问,这个目录对客户机来说就像使用本地驱动器一样。
当下我们处在一个互联网飞速发展的信息 社会 ,在海量并发连接的驱动下每天所产生的数据量必然以几何方式增长,随着信息连接方式日益多样化,数据存储的结构也随着发生了变化。在这样的压力下使得人们不得不重新审视大量数据的存储所带来的挑战,例如:数据采集、数据存储、数据搜索、数据共享、数据传输、数据分析、数据可视化等一系列问题。
传统存储在面对海量数据存储表现出的力不从心已经是不争的事实,例如:纵向扩展受阵列空间限制、横向扩展受交换设备限制、节点受文件系统限制。
然而分布式存储的出现在一定程度上有效的缓解了这一问题,之所以称之为缓解是因为分布式存储在面对海量数据存储时也并非十全十美毫无压力,依然存在的难点与挑战例如:节点间通信、数据存储、数据空间平衡、容错、文件系统支持等一系列问题仍处在不断摸索和完善中。
2.分布式文件系统的一些解决方案
Google Filesystem适合存储海量大个文件,元数据存储与内存中
HDFS(Hadoop Filesystem)GFS的山寨版,适合存储大量大个文件
TFS(Taobao Filesystem)淘宝的文件系统,在名称节点上将元数据存储与关系数据库中,文件数量不在受限于名称节点的内容空间,可以存储海量小文件LustreOracle开发的企业级分布式系统,较重量级MooseFS基于FUSE的格式,可以进行挂载使用MogileFS
擅长存储海量的小数据,元数据存储与关系型数据库中
1.简介
MogileFS是一个开源的分布式文件系统,用于组建分布式文件集群,由LiveJournal旗下DangaInteractive公司开发,Danga团队开发了包括 Memcached、MogileFS、Perlbal等不错的开源项目:(注:Perlbal是一个强大的Perl写的反向代理服务器)。MogileFS是一个开源的分布式文件系统。
目前使用 MogileFS 的公司非常多,比如国外的一些公司,日本前几名的公司基本都在使用这个.
国内所知道的使用 MogileFS 的公司有图片托管网站 yupoo又拍,digg, 土豆, 豆瓣,1 号店, 大众点评,搜狗,安居客等等网站.基本很多网站容量,图片都超过 30T 以上。
2.MogileFS特性
1) 应用层提供服务,不需要使用核心组件
2)无单点失败,主要有三个组件组成,分为tracker(跟踪节点)、mogstore(存储节点)、database(数据库节点)
3)自动复制文件,复制文件的最小单位不是文件,而是class
4)传输中立,无特殊协议,可以通过NFS或HTTP实现通信
5)简单的命名空间:没有目录,直接存在与存储空间上,通过域来实现
6)不用共享任何数据
3.MogileFS的组成
1)Tracker--跟踪器,调度器
MogileFS的核心,是一个调度器,mogilefsd进程就是trackers进程程序,trackers的主要职责有:删除数据、复制数据、监控、查询等等.这个是基于事件的( event-based ) 父进程/消息总线来管理所有来之于客户端应用的交互(requesting operations to be performed), 包括将请求负载平衡到多个"query workers"中,然后让 mogilefs的子进程去处理.
mogadm,mogtool的所有操作都要跟trackers打交道,Client的一些操作也需要定义好trackers,因此最好同时运行多个trackers来做负载均衡.trackers也可以只运行在一台机器上,使用负载均衡时可以使用搞一些简单的负载均衡解决方案,如haproxy,lvs,nginx等,
tarcker的配置文件为/etc/mogilefs/mogilefsd.conf,监听在TCP的7001端口
2)Database--数据库部分
主要用来存储mogilefs的元数据,所有的元数据都存储在数据库中,因此,这个数据相当重要,如果数据库挂掉,所有的数据都不能用于访问,因此,建议应该对数据库做高可用
3)mogstored--存储节点
数据存储的位置,通常是一个HTTP(webDAV)服务器,用来做数据的创建、删除、获取,任何 WebDAV 服务器都可以, 不过推荐使用 mogstored . mogilefsd可以配置到两个机器上使用不同端口… mogstored 来进行所有的 DAV 操作和流量,IO监测, 并且你自己选择的HTTP服务器(默认为 perlbal)用来做 GET 操作给客户端提供文件.
典型的应用是一个挂载点有一个大容量的SATA磁盘. 只要配置完配置文件后mogstored程序的启动将会使本机成为一个存储节点.当然还需要mogadm这个工具增加这台机器到Cluster中.
配置文件为/etc/mogilefs/mogstored.conf,监听在TCP的7500端口
4.基本工作流程
应用程序请求打开一个文件 (通过RPC 通知到 tracker, 找到一个可用的机器). 做一个 “create_open” 请求.
tracker 做一些负载均衡(load balancing)处理,决定应该去哪儿,然后给应用程序一些可能用的位置。
应用程序写到其中的一个位置去 (如果写失败,他会重新尝试并写到另外一个位置去).
应用程序 (client) 通过”create_close” 告诉tracker文件写到哪里去了.
tracker 将该名称和域命的名空间关联 (通过数据库来做的)
tracker, 在后台, 开始复制文件,知道他满足该文件类别设定的复制规则
然后,应用程序通过 “get_paths” 请求 domain+key (key == “filename”) 文件, tracker基于每一位置的I/O繁忙情况回复(在内部经过 database/memcache/etc 等的一些抉择处理), 该文件可用的完整 URLs地址列表.
应用程序然后按顺序尝试这些URL地址. (tracker’持续监测主机和设备的状态,因此不会返回死连接,默认情况下他对返回列表中的第一个元素做双重检查,除非你不要他这么做..)
1.拓扑图
说明:1.用户通过URL访问前端的nginx
2.nginx根据特定的挑选算法,挑选出后端一台tracker来响应nginx请求
3.tracker通过查找database数据库,获取到要访问的URL的值,并返回给nginx
4.nginx通过返回的值及某种挑选算法挑选一台mogstored发起请求
5.mogstored将结果返回给nginx
6.nginx构建响应报文返回给客户端
2.ip规划
角色运行软件ip地址反向代理nginx192.168.1.201存储节点与调度节点1
mogilefs192.168.1.202存储节点与调度节点2
mogilefs192.168.1.203数据库节点
MariaDB192.168.1.204
3.数据库的安装操作并为授权
关于数据库的编译安装,请参照本人相关博文http://wangfeng7399.blog.51cto.com/3518031/1393146,本处将不再累赘,本处使用的为yum源的安装方式安装mysql
4.安装mogilefs. 安装mogilefs,可以使用yum安装,也可以使用编译安装,本处通过yum安装
5.初始化数据库
可以看到在数据库中创建了一些表
6.修改配置文件,启动服务
7.配置mogilefs
添加存储主机
添加存储设备
添加域
添加class
8.配置192.168.1.203的mogilefs 。切记不要初始化数据库,配置应该与192.168.1.202一样
9.尝试上传数据,获取数据,客户端读取数据
上传数据,在任何一个节点上传都可以
获取数据
客户端查看数据
我们可以通过任何一个节点查看到数据
要想nginx能够实现对后端trucker的反向代理,必须结合第三方模块来实现
1.编译安装nginx
2.准备启动脚本
3.nginx与mofilefs互联
查看效果
5.配置后端truckers的集群
查看效果
大功告成了,后续思路,前段的nginx和数据库都存在单点故障,可以实现高可用集群
您好,您问的是Vmware有FastDFS功能吗?答案是否定的,Vmware不支持FastDFS功能。FastDFS是一种分布式文件系统,它专门用于存储大型文件,并具有高可用性和高性能。它主要用于存储图片、视频、音频等大文件,而Vmware是一种虚拟化技术,它可以将一台物理服务器虚拟化成多台虚拟服务器,以提高服务器的利用率。因此,Vmware不支持FastDFS功能,但它可以支持其他分布式文件系统,如HDFS,Ceph,GlusterFS等。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)