一、背景
随着vivo业务迁移到k8s的增长,我们需要将k8s部署到多个数据中心。如何高效、可靠的在数据中心管理多个大规模的k8s集群是我们面临的关键挑战。kubernetes的节点需要对os、docker、etcd、k8s、cni和网络插件的安装和配置,维护这些依赖关系繁琐又容易出错。
以前集群的部署和扩缩容主要通过ansible编排任务,黑屏化操作、配置集群的inventory和vars执行ansible playbook。集群运维的主要困难点如下:
二、集群部署实践
2.1 集群部署介绍
主要基于ansible定义的OS、docker、etcd、k8s和addons等集群部署任务。
主要流程如下:
上面看到是集群一键部署关键流程。当在多个数据中心部署完k8s集群后,比如集群组件的安全漏洞、新功能的上线、组件的升级等对线上集群进行变更时,需要小心谨慎的去处理。我们做到了化整为零,对单个模块去处理。避免全量的去执行ansible脚本,增加维护的难度。针对如docker、etcd、k8s、network-plugin和addons的模块化管理和运维,需提供单独的ansible脚本入口,更加精细的运维操作,覆盖到集群大部分的生命周期管理。同时kubernetes-operator的api设计的时候可以方便选择对应操作yml去执行操作。
集群部署优化操作如下:
(1)k8s的组件参数管理通过
ConmponentConfig[1]提供的API去标识配置文件。
(2)计划切换到kubeadm部署
(3)ansible使用规范
2.2 CI 矩阵测试
部署出来的集群,需要进行大量的场景测试和模拟。保证线上环境变更的可靠性和稳定性。
CI矩阵部分测试案例如下。
(1)语法测试:
(2)集群部署测试:
(3)性能和功能测试:
这里利用了GitLab、gitlab-runner[2]、ansible和kubevirt[3]等开源软件构建了CI流程。
详细的部署步骤如下:
如上图所示,当开发人员在GitLab提交PR时会触发一系列操作。这里主要展示了创建虚拟机和集群部署。其实在我们的集群还部署了语法检查和性能测试gitlab-runner,通过这些gitlab-runner创建CI的job去执行CI流程。
具体CI流程如下:
如上图所示,当开发人员提交多个PR时,会在k8s集群中创建多个job,每个job都会执行上述的CI测试,互相不会产生影响。这种主要使用kubevirt的能力,实现了k8s on k8s的架构。
kubevirt主要能力如下:
三、Kubernetes-Operator 实践
3.1 Operator 介绍
Operator是一种用于特定应用的控制器,可以扩展 K8s API的功能,来代表k8s的用户创建、配置和管理复杂应用的实例。基于k8s的资源和控制器概念构建,又涵盖了特定领域或应用本身的知识。用于实现其所管理的应用生命周期的自动化。
总结 Operator功能如下:
3.2 Kubernetes-Operator CR 介绍
kubernetes-operator的使用很多自定义的CR资源和控制器,这里简单的介绍功能和作用。
【ClusterDeployment】 : 管理员配置的唯一的CR,其中MachineSet、Machine和Cluster它的子资源或者关联资源。ClusterDeployment是所有的配置参数入口,定义了如etcd、k8s、lb、集群版本、网路和addons等所有配置。
【MachineSet】 :集群角色的集合包括控制节点、计算节点和etcd的配置和执行状态。
【Machine】 :每台机器的具体信息,包括所属的角色、节点本身信息和执行的状态。
【Cluster】 :和ClusterDeployment对应,它的status定义为subresource,减少
clusterDeployment的触发压力。主要用于存储ansible执行器执行脚本的状态。
【ansible执行器】 :主要包括k8s自身的job、configMap、Secret和自研的job控制器。其中job主要用来执行ansible的脚本,因为k8s的job的状态有成功和失败,这样job 控制器很好观察到ansible执行的成功或者失败,同时也可以通过job对应pod日志去查看ansible的执行详细流程。configmap主要用于存储ansible执行时依赖的inventory和变量,挂在到job上。secret主要存储登陆主机的密钥,也是挂载到job上。
【扩展控制器】 :主要用于扩展集群管理的功能的附加控制器,在部署kubernetes-operator我们做了定制,可以选择自己需要的扩展控制器。比如addons控制器主要负责addon插件的安装和管理。clusterinstall主要生成ansible执行器。remoteMachineSet用于多集群管理,同步元数据集群和业务集群的machine状态。还有其它的如对接公有云、dns、lb等控制器。
3.3 Kubernetes-Operator 架构
vivo的应用分布在数据中心的多个k8s集群上,提供了具有集中式多云管理、统一调度、高可用性、故障恢复等关键特性。主要搭建了一个元数据集群的pass平台去管理多个业务k8s集群。在众多关键组件中,其中kubernetes-operator就部署在元数据集群中,同时单独运行了machine控制器去管理物理资源。
下面举例部分场景如下:
场景一:
当大量应用迁移到kubernets上,管理员评估需要扩容集群。首先需要审批物理资源并通过pass平台生成对应machine的CR资源,此时的物理机处于备机池里,machine CR的状态为空闲状态。当管理员创建ClusterDeploment时所属的MachineSet会去关联空闲状态的machine,拿到空闲的machine资源,我们就可以观测到当前需要操作机器的IP地址生成对应的inventory和变量,并创建configmap并挂载给job。执行扩容的ansible脚本,如果job成功执行完会去更新machine的状态为deployed。同时跨集群同步node的控制器会检查当前的扩容的node是否为ready,如果为ready,会更新当前的machine为Ready状态,才完成整个扩容流程。
场景二:
当其中一个业务集群出现故障,无法提供服务,触发故障恢复流程,走统一资源调度。同时业务的策略是分配在多个业务集群,同时配置了一个备用集群,并没有在备用集群上分配实例,备用集群并不实际存在。
有如下2种情况:
3.4 Kubernetes-Operator 执行流程
四、总结
vivo大规模的K8s集群运维实践中,从底层的集群部署工具的优化,到大量的CI矩阵测试保证了我们线上集群运维的安全和稳定性。采用了K8s托管K8s的方式来自动化管理集群(K8s as a service),当operator检测当前的集群状态,判断是否与目标一致,出现不一致时,operator会发起具体的操作流程,驱动整个集群达到目标状态。
当前vivo的应用主要分布在自建的数据中心的多个K8s集群中,随着应用的不断的增长和复杂的业务场景,需要提供跨自建机房和云的多个K8s集群去运行原云生的应用程序。就需要Kubernetes-Operator提供对接公有云基础设施、apiserver的负载均衡、网络、dns和Cloud Provider 等。需要后续不断完善,降低K8s集群的运维难度。
本文作者:Zhang Rong 来源:vivo互联网技术
CIO之家 www.ciozj.com 微信公众号:imciow
某中型互联网公司的游戏业务,使用了腾讯云的Elasticsearch产品,采用ELK架构存储业务日志。因为游戏业务本身的日志数据量非常大(写入峰值在100w qps),在服务客户的几个月中,踩了不少坑,经过数次优化与调整,把客户的ES集群调整的比较稳定,避免了在业务高峰时客户集群的读写异常,并且降低了客户的资金成本和使用成本。下面把服务客户过程中遇到的典型问题进行梳理,总结经验,避免再次踩坑。
解决方案架构师A: bellen, XX要上线一款新游戏,日志存储决定用ELK架构,他们决定在XX云和我们之间二选一,我们首先去他们公司和他们交流一下,争取拿下!
bellen: 好,随时有空!
。。。
和架构师一起前往该公司,跟负责底层组件的运维部门的负责人进行沟通。
XX公司运维老大:不要讲你们的PPT了,先告诉我你们能给我们带来什么!
bellen: 。。。呃,我们有很多优势。。。比如灵活地扩容缩容集群,还可以一键平滑升级集群版本,并且提供有跨机房容灾的集群从而实现高可用。。
XX公司运维老大:你说的这些别的厂商也有,我就问一个问题,我们现在要存储一年的游戏日志,不能删除数据,每天就按10TB的数据量算,一年也得有个3PB多的数据,这么大的数量,都放在SSD云盘上,我们的成本太高了,你们有什么方案既能够满足我们存储这么大数据量的需求,同时能够降低我们的成本吗?
bellen: 我们本身提供的有冷热模式的集群,热节点采用SSD云硬盘,冷节点采用SATA盘,采用ES自带的ILM索引生命周期管理功能定期把较老的索引从热节点迁移到冷节点上,这样从整体上可以降低成本。另外一方面,也可以定期把更老的索引通过snapshot快照备份到COS对象存储中,然后删除索引,这样成本就更低了。
XX公司运维老大:存储到COS就是冷存储呗,我们需要查询COS里的数据时,还得再把数据恢复到ES里?这样不行,速度太慢了,业务等不了那么长时间,我们的数据不能删除,只能放在ES里!你们能不能给我们提供一个API, 让老的索引数据虽然存储在COS里,但是通过这个API依然可以查询到数据,而不是先恢复到ES, 再进行查询?
bellen: 。。。呃,这个可以做,但是需要时间。是否可以采用hadoop on COS的架构,把存量的老的索引数据通过工具导入到COS,通过hive去查询,这样成本会非常低,数据依然是随时可查的。
XX公司运维老大:那不行,我们只想用成熟的ELK架构来做,再增加hadoop那一套东西,我们没那么多人力搞这个事!
bellen: 好吧,那可以先搞一个集群测试起来,看看性能怎么样。关于存量数据放在COS里但是也需要查询的问题,我们可以先制定方案,尽快实施起来。
XX公司运维老大:行吧,我们现在按每天10TB数据量预估,先购买一个集群,能撑3个月的数据量就行,能给一个集群配置的建议吗?
bellen: 目前支持单节点磁盘最大6TB, cpu和内存的话可以放到8核32G单节点,单节点跑2w qps写入没有问题,后面也可以进行纵向扩容和横向扩容。
XX公司运维老大:好,我们先测试一下。
N 天后,架构师A直接在微信群里反馈:"bellen, 客户反馈这边的ES集群性能不行啊,使用logstash消费kafka中的日志数据,跑了快一天了数据还没追平,这是线上的集群,麻烦紧急看一下吧。。"
我一看,一脸懵, 什么时候已经上线了啊,不是还在测试中吗?
XX公司运维小B: 我们购买了8核32G*10节点的集群,单节点磁盘6TB, 索引设置的10分片1副本,现在使用logstash消费kafka中的数据,一直没有追平,kafka中还有很多数据积压,感觉是ES的写入性能有问题。
随后我立即查看了集群的监控数据,发现cpu和load都很高,jvm堆内存使用率平均都到了90%,节点jvm gc非常频繁了,部分节点因为响应缓慢,不停的离线又上线。。
经过沟通,发现用户的使用姿势是filebeat+kafka+logstash+elasticsearch, 当前已经在kafka中存储了有10天的日志数据,启动了20台logstash进行消费,logstash的batch size也调到了5000,性能瓶颈是在ES这一侧。客户8核32G*10节点的集群,理论上跑10w qps没有问题,但是logstash消费积压的数据往ES写入的qps远不止10w,所以是ES扛不住写入压力了,所以只能对ES集群进行扩容,为了加快存量数据的消费速度,先纵向扩容单节点的配置到32核64GB,之后再横向增加节点,以保证ES集群能够最大支持100w qps的写入(这里需要注意的是,增加节点后索引的分片数量也需要调整)。
所以一般新客户接入使用ES时,必须要事先评估好节点配置和集群规模,可以从以下几个方面进行评估:
上述场景2遇到的问题是业务上线前没有对集群配置和规模进行合理的评估,导致上线后ES集群负载就很高,通过合理的扩容处理,集群最终抗住了写入压力。但是又有新的问题出现了。
因为kafka积压的数据比较多,客户使用logstash消费kafka数据时,反馈有两个问题:
经过分析客户logstash的配置文件,发现问题出现的原因主要是:
分析后,对kafka和logstash进行了如下优化:
通过上述优化,最终使得logstash机器资源都被充分利用上,很快消费完堆积的kafka数据,待消费速度追平生成速度后,logstash消费kafka一直稳定运行,没有出现积压。
另外,客户一开始使用的是5.6.4版本的logstash,版本较老,使用过程中出现因为单个消息体过长导致logstash抛异常后直接退出的问题:
通过把logstash升级至高版本6.8避免了这个问题(6.x版本的logstash修复了这个问题,避免了crash)。
客户的游戏上线有一个月了,原先预估每天最多有10TB的数据量,实际则是在运营活动期间每天产生20TB的数据,原先6TB*60=360TB总量的数据盘使用率也达到了80%。针对这种情况,我们建议客户使用冷热分离的集群架构,在原先60个热节点的基础上,增加一批warm节点存储冷数据,利用ILM(索引生命周期管理)功能定期迁移热节点上的索引到warm节点上。
通过增加warm节点的方式,客户的集群磁盘总量达到了780TB, 可以满足最多三个月的存储需求。但是客户的需求还没有满足:
XX公司运维老大:给我们一个能存放一年数据的方案吧,总是通过加节点扩容磁盘的方式不是长久之计,我们得天天盯着这个集群,运维成本很高!并且一直加节点,ES会扛不住吧?
bellen: 可以尝试使用我们新上线的支持本地盘的机型,热节点最大支持7.2TB的本地SSD盘,warm节点最大支持48TB的本地SATA盘。一方面热节点的性能相比云盘提高了,另外warm节点可以支持更大的磁盘容量。单节点可以支持的磁盘容量增大了,节点数量就不用太多了,可以避免踩到因为节点数量太多而触发的坑。
XX公司运维老大:现在用的是云盘,能替换成本地盘吗,怎么替换?
bellen: 不能直接替换,需要在集群中新加入带本地盘的节点,把数据从老的云盘节点迁移到新的节点上,迁移完成后再剔除掉旧的节点,这样可以保证服务不会中断,读写都可以正常进行。
XX公司运维老大:好,可以实施,尽快搞起来!
云盘切换为本地盘,是通过调用云服务后台的API自动实施的。在实施之后,触发了数据从旧节点迁移到新节点的流程,但是大约半个小时候,问题又出现了:
XX公司运维小B: bellen, 快看一下,ES的写入快掉0了。
bellen: 。。。
通过查看集群监控,发现写入qps直接由50w降到1w,写入拒绝率猛增,通过查看集群日志,发现是因为当前小时的索引没有创建成功导致写入失败。
紧急情况下,执行了以下操作定位到了原因:
经过了这次扩容操作,总结了如下经验:
在稳定运行了一阵后,集群又出问题了。。
XX公司运维小B: bellen, 昨晚凌晨1点钟之后,集群就没有写入了,现在kafka里有大量的数据堆积,麻烦尽快看一下?
bellen: 。。。
通过cerebro查看集群,发现集群处于yellow状态,然后发现集群有大量的错误日志:
然后再进一步查看集群日志,发现有"master not discovered yet..."之类的错误日志,检查三个master节点,发现有两个master挂掉,只剩一个了,集群无法选主。
登陆到挂了了master节点机器上,发现保活程序无法启动es进程,第一直觉是es进程oom了;此时也发现master节点磁盘使用率100%, 检查了JVM堆内存快照文件目录,发现有大量的快照文件,于是删除了一部分文件,重启es进程,进程正常启动了;但是问题是堆内存使用率太高,gc非常频繁,master节点响应非常慢,大量的创建索引的任务都超时,阻塞在任务队列中,集群还是无法恢复正常。
看到集群master节点的配置是16核32GB内存,JVM实际只分配了16GB内存,此时只好通过对master节点原地增加内存到64GB(虚拟机,使用的腾讯云CVM, 可以调整机器规格,需要重启),master节点机器重启之后,修改了es目录jvm.options文件,调整了堆内存大小,重新启动了es进程。
3个master节点都恢复正常了,但是分片还需要进行恢复,通过GET _cluster/health看到集群当前有超过10w个分片,而这些分片恢复还需要一段时间,通过调大"cluster.routing.allocation.node_concurrent_recoveries", 增大分片恢复的并发数量。实际上5w个主分片恢复的是比较快的了,但是副本分片的恢复就相对慢很多,因为部分副本分片需要从主分片上同步数据才能恢复。此时可以采取的方式是把部分旧的索引副本数量调为0, 让大量副本分片恢复的任务尽快结束,保证新索引能够正常创建,从而使得集群能够正常写入。
总结这次故障的根本原因是集群的索引和分片数量太多,集群元数据占用了大量的堆内存,而master节点本身的JVM内存只有16GB(数据节点有32GB), master节点频繁full gc导致master节点异常,从而最终导致整个集群异常。所以要解决这个问题,还是得从根本上解决集群的分片数量过多的问题。
目前日志索引是按照小时创建,60分片1副本,每天有24*60*2=2880个分片,每个月就产生86400个分片,这么多的分片可能会带来严重的问题。有以下几种方式解决分片数量过多的问题:
和客户沟通过后,客户表示可以接受方式1和方式2,但是方式3和4不能接受,因为考虑到存在磁盘故障的可能性,必须保留一个副本来保证数据的可靠性;另外还必须保证所有数据都是随时可查询的,不能关闭。
在场景5中,虽然通过临时给master节点增加内存,抗住了10w分片,但是不能从根本上解决问题。客户的数据是计划保留一年的,如果不进行优化,集群必然扛不住数十万个分片。所以接下来需要着重解决集群整体分片数量过多的问题,在场景5的最后提到了,用户可以接受开启shrink以及降低索引创建粒度(经过调整后,每两个小时创建一个索引),这在一定程度上减少了分片的数量,能够使集群暂时稳定一阵。
辅助客户在kibana上配置了如下的ILM策略:
在warm phase, 把创建时间超过360小时的索引从hot节点迁移到warm节点上,保持索引的副本数量为1,之所以使用360小时作为条件,而不是15天作为条件,是因为客户的索引是按小时创建的,如果以15天作为迁移条件,则在每天凌晨都会同时触发15天前的24个索引一共24*120=2880个分片同时开始迁移索引,容易引发场景4中介绍的由于迁移分片数量过多导致创建索引被阻塞的问题,所以以360小时作为条件,则在每个小时只会执行一个索引的迁移,这样把24个索引的迁移任务打平,避免其它任务被阻塞的情况发生。
同时,也在warm phase阶段,设置索引shrink,把索引的分片数缩成5个,因为老的索引已经不执行写入了,所以也可以执行force merge, 强制把segment文件合并为1个,可以获得更好的查询性能。
另外,设置了ILM策略后,可以在索引模板里增加index.lifecycle.name配置,使得所有新创建的索引都可以和新添加的ILM策略关联,从而使得ILM能够正常运行。
客户使用的ES版本是6.8.2, 在运行ILM的过程中, 也发现一些问题:
这是因为shrink操作需要新把索引完整的一份数据都迁移到一个节点上,然后在内存中构建新的分片元数据,把新的分片通过软链接指向到几个老的分片的数据,在ILM中执行shrink时,ILM会对索引进行如下配置:
问题是索引包含副本,而主分片和副本分片又不能在同一个节点上,所以会出现部分分片无法分配的情况(不是全部,只有一部分),这里应该是触发了6.8版本的ILM的bug,需要查看源码才能定位解决这个bug,目前还在研究中。当前的workaround是通过脚本定期扫描出现unassigned shards的索引,修改其settings:
优先保证分片先从hot节点迁移到warm节点,这样后续的shrink才能顺利执行(也可能执行失败,因为60个分片都在一个节点上,可能会触发rebalance, 导致分片迁移走,shrink的前置条件又不满足,导致执行失败)。要完全规避这个问题,还得在ILM策略中设置,满足创建时间超过360个小时的索引,副本直接调整为0,但是客户又不接受,没办法。
在场景5和6中,介绍了10w个分片会给集群带来的影响和通过开启shrink来降低分片数量,但是仍然有两个需要重点解决的问题:
可以估算一下,按小时建索引,60分片1副本,一年的分片数为24*120*365=1051200个分片,执行shrink后分片数量24*10*350 + 24*120*15 = 127200(15天内的新索引为了保障写入性能和数据可靠性,仍然保持60分片1副本,旧的索引shrink为5分片1副本), 仍然有超过10w个分片。结合集群一年总的存储量和单个分片可以支持的数据量大小进行评估,我们期望集群总体的分片数量可以稳定为6w~8w,怎么优化?
可以想到的方案是执行数据冷备份,把比较老的索引都冷备到其它的存储介质上比如HDFS,S3,腾讯云的COS对象存储等,但是问题是这些冷备的数据如果也要查询,需要先恢复到ES中才可查,恢复速度比较慢,客户无法接受。由此也产生了新的想法,目前老的索引仍然是1副本,可以把老索引先进行冷备份,再把副本调为0,这样做有以下几点好处:
经过和客户沟通,客户接受了上述方案,计划把老索引冷备到腾讯云的对象存储COS中,实施步骤为:
其中步骤1的实施可以通过脚本实现,本案例中采用腾讯云SCF云函数进行实施,方便快捷可监控。实施要点有:
在实施完步骤1之后,就可以批量把对索引进行过备份的索引副本数都调为0, 这样一次性释放了很多磁盘空间,并且显著降低了集群整体的分片数量。
接下来实施步骤2,需要每天执行一次快照,多创建时间较久的索引进行备份,实施比较简单,可以通过crontab定时执行脚本或者使用腾讯云SCF执行。
步骤2实施之后,就可以修改ILM策略,开启cold phase, 修改索引副本数量为0:
此处的timing是创建时间20天后,需要保证步骤2中对过去老索引数据备份先执行完成才可以进入到cold phase.
通过老索引数据冷备并且降低索引副本,我们可以把集群整体的分片数量维持在一个较低的水位,但是还有另外一个问题待解决,也即shrink失败的问题。刚好,我们可以利用对老索引数据冷备并且降低索引副本的方案,来彻底解决shrink失败的问题。
在场景5中有提到,shrink失败归根接地是因为索引的副本数量为1, 现在我们可以吧数据备份和降低副本提前,让老索引进入到ILM的warm phase中时已经是0副本,之后再执行shrink操作就不会有问题了;同时,因为副本降低了,索引从hot节点迁移到warm节点迁移的数据量也减少了一半,从而降低了集群负载,一举两得。
因此,我们需要修改ILM策略,在warm phase就把索引的副本数量调整为0, 然后去除cold phase。
另外一个可选的优化项是,对老的索引进行冻结,冻结索引是指把索引常驻内存的一些数据从内存中清理掉(比如FST, 元数据等), 从而降低内存使用量,而在查询已经冻结的索引时,会重新构建出临时的索引数据结构存放在内存中,查询完毕再清理掉;需要注意的是,默认情况下是无法查询已经冻结的索引的,需要在查询时显式的增加"ignore_throttled=false"参数。
经过上述优化,我们最终解决了集群整体分片数量过多和shrink失败的问题。在实施过程中引入了额外的定时任务脚本实施自动化快照,实际上在7.4版本的ES中,已经有这个功能了,特性名称为 SLM (快照生命周期管理),并且可以结合ILM使用,在ILM中增加了"wait_for_snapshot"的ACTION, 但是却只能在delete phase中使用,不满足我们的场景。
在上述的场景4-7中,我们花费大量的精力去解决问题和优化使用方式,保证ES集群能够稳定运行,支持PB级别的存储。溯本回原,如果我们能有一个方案使得客户只需要把热数据放在SSD盘上,然后冷数据存储到COS/S3上,但同时又使冷数据能够支持按需随时可查,那我们前面碰到的所有问题都迎刃而解了。可以想象得到的好处有:
而这正是目前es开源社区正在开发中的Searchable Snapshots功能,从 Searchable Snapshots API 的官方文档上可以看到,我们可以创建一个索引,将其挂载到一个指定的快照中,这个新的索引是可查询的,虽然查询时间可能会慢点,但是在日志场景中,对一些较老的索引进行查询时,延迟大点一般都是可以接受的。
所以我认为,Searchable Snapshots解决了很多痛点,将会给ES带了新的繁荣!
经历过上述运维和优化ES集群的实践,我们总结到的经验有:
从一开始和客户进行接触,了解客户诉求,逐步解决ES集群的问题,最终使得ES集群能够保持稳定,这中间的经历让我真真正正的领悟到"实践出真知",只有不断实践,才能对异常情况迅速做出反应,以及对客户提的优化需求迅速反馈。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)