r语言可不可以对自定义方程检验

r语言可不可以对自定义方程检验,第1张

R的功能很强大,各种包很多。但就是因为包太多,造成了很大的麻烦。不可避免的,可以做结构方程模型的包也不少,例如:sem、psych、OpenMx,lavaan等。我选择了lavaan包。原因:语法简介易懂,上手快,支持非正态、连续数据,可以处理缺失值。

lavaan包是由比利时根特大学的Yves Rosseel开发的。lavaan的命名来自于 latent variable analysis,由每个单词的前两个字母组成,la-va-an——lavaan。

为什么说它简单呢? 主要是因为它的lavaan model syntax,如果你会R的回归分析,那它对你来说再简单不过了。

一、语法简介

语法一:f3~f1+f2(路径模型)

结构方程模型的路径部分可以看作是一个回归方程。而在R中,回归方程可以表示为y~ax1+bx2+c,“~”的左边的因变量,右边是自变量,“+”把多个自变量组合在一起。那么把y看作是内生潜变量,把x看作是外生潜变量,略去截距,就构成了lavaan model syntax的语法一。

语法二:f1 =~ item1 + item2 + item3(测量模型)

"=~"的左边是潜变量,右边是观测变量,整句理解为潜变量f1由观测变量item1、item2和item3表现。

语法三:item1 ~~ item1 , item1 ~~ item2

"~~"的两边相同,表示该变量的方差,不同的话表示两者的协方差

语法四:f1 ~ 1

表示截距

此外还有其它高阶的语法,详见lavaan的help文档,一般的结构方程建模分析用不到,就不再列出。

二、模型的三种表示方法

以验证性因子分析举例说明,对于如下图所示的模型:

方法一:最简化描述

只需指定最基本的要素即可,其他的由函数自动实现,对模型的控制力度最弱。只使用于函数cfa()和sem()

model<-'visual=~x1+x2+x3 textual=~x4+x5+x6 speed=~x7+x8+x9' fit <- cfa(model, data = HolzingerSwineford1939)

需要注意的是,这种指定模型的方式在进行拟合时,会默认指定潜变量的第一个测量变量的因子载荷为1,如果要指定潜变量的方差为1,可以:

model.bis <- 'visual =~ NA*x1 + x2 + x3 textual =~ NA*x4 + x5 + x6 speed =~ NA*x7 + x8 + x9 visual ~~ 1*visual textual ~~ 1*textual speed ~~ 1*speed'

方法二:完全描述

需要指定所有的要素,对模型控制力最强,适用于lavaan()函数,适合高阶使用者

model.full<- ' visual =~ 1*x1 + x2 +x3 textual =~ 1*x4 + x5 + x6 speed =~ 1*x7 + x8 +x9 x1 ~~ x1 x2 ~~ x2 x3 ~~ x3 x4 ~~ x4 x5 ~~ x5 x6 ~~ x6 x7 ~~ x7 x8 ~~ x8 x9 ~~ x9 visual ~~ visual textual ~~ textual speed ~~ speed visual ~~ textual +speed textual ~~ speed' fit <- lavaan(model.full, data = HolzingerSwineford1939)

方法三:不完全描述

最简化和完全描述的混合版,在拟合时增加 auto.* 参数,适用于lavaan()函数

model.mixed<- '# latent variables visual =~ 1*x1 + x2 +x3 textual =~ 1*x4 + x5 + x6 speed =~ 1*x7 + x8 +x9 # factor covariances visual ~~ textual + speed textual ~~ speed' fit <- lavaan(model.mixed, data = HolzingerSwineford1939, auto.var = TRUE)

可以设定的参数详见help帮助文档

PS:可以在lavaan()函数里设置参数mimic="Mplus"获得与Mplus在数值和外观上相似的结果,设置mimic="EQS",输出与EQS在数值上相似的结果

三、拟合结果的查看

查看拟合结果的最简单方法是用summary()函数,例如

summary(fit, fit.measures=TRUE)

但summary()只适合展示结果,parameterEstimates()会返回一个数据框,方便进一步的处理

parameterEstimates(fit,ci=FALSE,standardized = TRUE)

获得大于10的修正指数

MI<- modificationindices(fit) subset(MI,mi>10)

此外,还有其他的展示拟合结果的函数,功能还是蛮强大的

四、结构方程模型

(1)设定模型

model<- ' # measurement model ind60 =~ x1 + x2 +x3 dem60 =~ y1 + y2 + y3 + y4 dem65 =~ y5 + y6 + y7 + y8 # regressions dem60 ~ ind60 dem65 ~ ind60 + dem60 # redisual covariances y1 ~~ y5 y2 ~~ y4 +y6 y3 ~~ y7 y4 ~~ y8 y6 ~~ y8'

(2)模型拟合

fit <- sem(model, data = PoliticalDemocracy) summary(fit, standardized = TRUE)

(3)给回归系数设置标签

给回归系数设定标签在做有约束条件的结构方程模型时会很有用。当两个参数具有相同的标签时,会被视为同一个,只计算一次。

model.equal <- '# measurement model ind60 =~ x1 + x2 + x3 + dem60 =~ y1 + d1*y2 + d2*y3 + d3*y4 dem65 =~ y5 + d1*y6 + d2*y7 + d3*y8 # regressions dem60 ~ ind60 dem65 ~ ind60 + dem60 # residual covariances y1 ~~ y5 y2 ~~ y4 + y6 y3 ~~ y7 y4 ~~ y8 y6 ~~ y8'

(4)多组比较

anova(fit, fit.equal)

anova()会计算出卡方差异检验

(5)拟合系数

lavaan包可以高度定制化的计算出你想要的拟合指标值,例如,我想计算出卡方、自由度、p值、CFI、NFI、IFI、RMSEA、EVCI的值

fitMeasures(fit,c("chisq","df","pvalue","cfi","nfi","ifi","rmsea","EVCI"))

(6)多组结构方程

在拟合函数里面设置 group参数即可实现,同样的可以设置group.equal参数引入等式限制

五、作图

Amos以作图化操作见长,目前版本的Mplus也可以实现作图,那R语言呢,自然也是可以的,只不过是另一个包——semPlot,其中的semPaths()函数。

简单介绍一下semPaths()中的主要函数

semPaths(object, what = "paths", whatLabels, layout = "tree", ……)

(1)object:是拟合的对象,就是上文中的“fit”

(2)what:设定图中线的属性, 默认为paths,图中所有的线都为灰色,不显示参数估计值;

semPaths(fit)

若what设定为est、par,则展示估计值,并将线的颜色、粗细、透明度根据参数估计值的大小和显著性做出改变

semPaths(fit,what = "est")

若设置为stand、std,则展示标准参数估计

semPaths(fit,what = "stand")

若设置为eq、cons,则与默认path相同,如果有限制等式,被限制的相同参数会打上相同的颜色;

(3)whatLabels:设定图中线的标签

name、label、path、diagram:将边名作为展示的标签

est、par:参数估计值作为边的标签

stand、std:标准参数估计值作为边的标签

eq、cons:参数号作为标签,0表示固定参数,被限制相同的参数编号相同

no、omit、hide、invisible:隐藏标签

(4)layout:布局

主要有树状和环状两种布局,每种布局又分别有两种风格。

默认为“tree”,树状的第二种风格如下图,比第一种看起来舒服都了

semPaths(fit,layout = "tree2")

第一种环状

semPaths(fit,layout = "circle")

额,都揉成一团了!

试试第二种风格

semPaths(fit,layout = "circle2")

还好一点。如果把Rstudio默认的图片尺寸设计好,作图效果会更棒。

还有一种叫spring的布局,春OR泉?

semPaths(fit,layout = "spring")

看起来跟环状的很像。

详细内容可以阅读以下文献,以及相应的help文档:

[1]Rosseel Y. lavaan: An R package for structural equation modeling[J]. Journal of Statistical Software, 2012, 48(2): 1-36.

R语言实际上是函数的集合,用户可以使用base,stats等包中的基本函数,也可以自己编写函数完成一定的功能。但是初学者往往认为编写R函数十分困难,或者难以理解。这里对如何编写R函数进行简要的介绍。

函数是对一些程序语句的封装。换句话说,编写函数,可以减少人们对重复代码书写,从而让R脚本程序更为简洁,高效。同时也增加了可读性。一个函数往往完成一项特定的功能。例如,求标准差sd,求平均值,求生物多样性指数等。R数据分析,就是依靠调用各种函数来完成的。但是编写函数也不是轻而易举就能完成的,需要首先经过大量的编程训练。特别是对R中数据的类型,逻辑判别、下标、循环等内容有一定了解之后,才好开始编写函数。 对于初学者来说,最好的方法就是研究现有的R函数。因为R程序包都是开源的,所有代码可见。研究现有的R函数能够使编程水平迅速提高。

R函数无需首先声明变量的类型,大部分情况下不需要进行初始化。一个完整的R函数,需要包括函数名称,函数声明,函数参数以及函数体几部分。

函数名称,即要编写的函数名称,这一名称就作为将来调用R函数的依据。

2. 函数声明,包括 <- function, 即声明该对象的类型为函数。

3. 函数参数,这里是输入的数据,函数参数是一个虚拟出来的一个对象。函数参数所等于的数据,就是在函数体内部将要处理的值,或者对应的数据类型。 函数体内部的程序语句进行数据处理,就是对参数的值进行处理 ,这种处理只在调用函数的时候才会发生。函数的参数可以有多种类型。R help的界面对每个函数,及其参数的意义及所需的数据类型都进行了说明。

4. 函数体

常常包括三部分.

(1). 异常处理

输入的数据不能满足函数计算的要求,或者类型不符, 这时候一定要设计相应的机制告诉用户,输入的数据在什么地方有错误。 错误又分为两种。

第一种, 如果输入的数据错误不是很严重,可以经过转换,变为符合处理要求的数据时, 此时只需要给用户一个提醒,告知数据类型不符,但是函数本身已经 进行了相应的转换。

第二种,数据完全不符合要求,这种情况下,就 要终止函数的运行,而告知因为什么,函数不能运行。这样,用户在 使用函数的情况先才不至于茫然。

(2). 运算过程

包括具体的运算步骤。 运算过程和该函数要完成的功能有关。

R运算过程中,应该尽量减少循环的使用,特别是嵌套循环。R提供了 apply,replicate等一系列函数,来代替循环,应该尽量应用这些函数, 提高效率。 如果在R中实在太慢,那么核心部分只能依靠C或者Fortran 等语言编写,然后再用R调用这些编译好的模块,达到更高的效率。

运算过程中,需要大量用到if等条件作为判别的标准。if和while都是需要数据TRUE/FALSE这样的逻辑类型变量,这就意味着,if内部,往往是对条件的判别,例如 is.na, is.matrix, is.numeric等等,或者对大小的比较,如,if(x >0), if(x == 1), if(length(x)== 3)等等。if后面,如果是1行,则花括号可以省略,否则就必须要将所有的语句都放在花括号中。这和循环是一致的。

例子:

## if与条件判断

fun.test <- function(a, b, method = "add"){

if(method == "add") { ## 如果if或者for/while;

res <- a + b ## 等后面的语句只有一行,则无需使用花括号。

}

if(method == "subtract"){

res <- a - b

}

return(res) ## 返回值

}

### 检验结果

fun.test(a = 10, b = 8, method = "add")

fun.test(a = 10, b = 8, method = "substract")

(1)plot(lm.ridge(GDP~Consume+Investment+IO+Population+Jobless+Goods,

data=dat,lambda=seq(0,0.3,0.001))) # 和线性回归类似,这个plot可以画出岭迹图,lambda=seq(0,0.3,0.001)设置范围和间隔,可以观察岭迹图,人工选择,但是这样主观性较强。

(2)select(lm.ridge(GDP~Consume+Investment+IO+Population+Jobless+Goods,

data=dat,lambda=seq(0,0.3,0.001))) #利用select 函数找出最优岭参数lambda,会有三个值,任选一个即可。

lm.ridge(GDP~Consume+Investment+IO+Population+Jobless+Goods,

data=dat,lambda=0.09)#通过(1)或(2)把选取的lmbda 参数写到岭回归函数中去,在这里lambda=0.09。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/457935.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-03
下一篇2023-06-03

发表评论

登录后才能评论

评论列表(0条)

    保存