说明服务器实际压力,能承受的最大并发访问数,既取决于业务并发用户数,还取决于用户的业务场景,这些可以通过对服务器日志的分析得到。
一般只需要分析出典型业务(用户常用,最关注的业务操作)
给出一个估算业务并发用户数的公式(测试人员一般只关心业务并发用户数)
C=nL/T
C^=C+3×(C的平方根)
C是平均的业务并发用户数、n是login session的数量、L是login session的平均长度、T是指考察的时间段长度、C^是指业务并发用户数的峰值。
假设OA系统有1000用户,每天400个用户发访问,每个登录到退出平均时间2小时,在1天时间内用户只在8小时内使用该系统。
C=400×2/8=100
C^=100+3×(100的平方根)=100+3×10=130
另外,如果知道平均每个用户发出的请求数u,则系统吞吐量可以估算为u×C
精确估算,还要考虑用户业务操作存在一定的时间集中性(比如上班后1小时内是OA系统高峰期),采用公式计算仍然会存在偏差。
285-104-1346
通过并发推算出实际用户量是多少?每天业务峰值15000 按照10倍的增长计算,15000*10=150000,每天8小时正常工作时间,按照20%用户集中访问,那么TPS为多少?
150000*0.8/(0.2*8*60*60)=20/S
并发数计算=平均响应时间*tps
TPS计算=并发数/平均响应时间
每台服务器每秒处理请求的数量=((80%*总PV量)/(24小时*60分*60秒*40%)) / 服务器数量 。
其中关键的参数是80%、40%。表示一天中有80%的请求发生在一天的40%的时间内。24小时的40%是9.6小时,有80%的请求发生一天的9.6个小时当中(很适合互联网的应用,白天请求多,晚上请求少)。
简单计算的结果:
((80%*500万)/(24小时*60分*60秒*40%))/1 = 115.7个请求/秒
((80%*100万)/(24小时*60分*60秒*40%))/1 = 23.1个请求/秒
初步结论:
现在我们在做压力测试时,就有了标准,如果你的服务器一秒能处理115.7个请求,就可以承受500万PV/每天。如果你的服务器一秒能处理23.1个请求,就可以承受100万PV/每天。
PV是指页面的访问次数,每打开或刷新一次页面,就算做一个pv
留足余量:
以上请求数量是均匀的分布在白天的9.6个小时中,但实际情况并不会这么均匀的分布,会有高峰有低谷。为了应对高峰时段,应该留一些余地,最少也要x2倍,x3倍也不为过。
115.7个请求/秒 *2倍=231.4个请求/秒
115.7个请求/秒 *3倍=347.1个请求/秒
23.1个请求/秒 *2倍=46.2个请求/秒
23.1个请求/秒 *3倍=69.3个请求/秒
最终结论:
如果你的服务器一秒能处理231.4--347.1个请求/秒,就可以应对平均500万PV/每天。
如果你的服务器一秒能处理46.2--69.3个请求,就可以应对平均100万PV/每天。
1、减少内存分配和释放
服务器在运行过程中,需要大量的内存容量来支撑,内存的分配和释放就尤为关键。用户在使用服务器的时候,可以通过改善数据结构以及算法制度来减少中间临时变量的内存分配和数据复制时间。
另外,可以选择使用共享内存模式来降低内存的分配和释放问题。共享内存在多处理器系统中,可以被不同的中央处理器访问,也可以有不同的进程共享,是一种非常快的进程通信方式。
2、使用持久链接
持久链接也被称为场链接,是通过TCP通信的一种方式。在一次TCP链接中持续发送多份数据而不断开连接。
从性能角度上来讲,建立TCP链接次数越少,越有利于性能的提升,尤其对于密集型图片或者网页等数据处理上来说有明显的加速作用。
3、改进I/O模型
I/O操作根据设备形式有不同的类型,例如我们常见的内存I/O,网络I/O,磁盘I/O。针对网络I/O和磁盘I/O, 它们的速度要慢很多,可以选择采用高带宽网络适配器可以提高网络I/O速度。
以上的I/O操作时需要CPU来调度的,这就需要CPU空出时间来等待I/O操作。如果在CPU调度上使用时间较少,也就能节约出CPU的处理时间,从这一点上来说也是提升高服务器并发处理能力的方式。
4、改进服务器并发数策略
服务器高并发策略的调整,是为了让I/O操作和CPU计算尽量重叠进行。一方面使CPU在I/O操作时等待时间内不要空闲,另一方面也是为了最大限度缩短等待时间。【感兴趣的话点击此处,了解一下】
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)