在测量平差中n、t、r、c、u、s等六个字母各代表什么量?它们之间有何关系?

在测量平差中n、t、r、c、u、s等六个字母各代表什么量?它们之间有何关系?,第1张

n——总观测数;

t——必要观测数;

r——多余观测数;

u——未知参数个数;

s——未知参数中具有函数约束的条件数;

c——般约束条件个数。

函数关系:r=n-t,r+u=c+s。

扩展资料

平差测量步骤

(1)观测数据检核,起始数据正确性的处理。

(2)列出误差方程式或条件方程式,按最小二乘法原理进行平差。

(3)平差结果的质量评定。按观测量相互间的关系,可分为相关的或不相关的平差。平差的方法有直接平差、间接平差、条件平差、附有条件的间接平差和附有未知数的条件平差等。

1、适用范围不一样

四参数用于较小范围,七参数用于较大范围。

2、需要的控制点不一样

四参数最少需要2个控制点对,七参数最少需要3个控制点对。

3、转换结果不一样

四参数仅用于平面转换,可以说,四参数是用于两个平面直角坐标系之间的互相转换,而七参数是用于两个三维空间直角坐标系之间的转换。

4、难易程度不同

四参数可以利用任意两个具有三维坐标的已知等级控制点求出,求解较简单,也容易理解;

而七参数需要在测区布设一定密度的等级控制网点,利用整个网的WGS-84坐标系下的三维约束平差结果和当地坐标系统的二维约束平差结果及各点的高程解算,求解较为复杂,理解起来相对困难。

扩展资料:

四参数和七参数的使用:

1、四参数

两个不同的二维平面直角坐标系之间转换通常使用四参数模型,四参数适合小范围测区的空间坐标转换,相对于七参数转换的优势在于只需要2个公共已知点就能进行转换,操作简单。

在该模型中有四个未知参数,即:

(1)两个坐标平移量(△X,△Y),即两个平面坐标系的坐标原点之间的坐标差值。

(2)平面坐标轴的旋转角度A,通过旋转一个角度,可以使两个坐标系的X和Y轴重合在一起。

(3)尺度因子K,即两个坐标系内的同一段直线的长度比值,实现尺度的比例转换。通常K值几乎等于1。

四参数的数学含义是:用含有四个参数的方程表示因变量(y)随自变量(x)变化的规律。

举个例子,在珠海既有北京54的平面坐标又有珠海的平面坐标,在这两种坐标之间转换就用到四参数。四参数的获取需要有两个公共已知点。

2、七参数

七参数一般采用布尔沙模型法,适合大范围测区的空间坐标转换,转换时需要至少3个公共已知点。因为有较多的已知点,所以七参数转换的坐标精度要高于四参数转换的坐标精度,但是操作较四参数法复杂。

七参数模型中有七个未知参数,即:

(1)三个坐标平移量(△X,△Y,△Z),即两个空间坐标系的坐标原点之间坐标差值。

(2)三个坐标轴的旋转角度(△α,△β,△γ)),通过按顺序旋转三个坐标轴指定角度,可以使两个空间直角坐标系的XYZ轴重合在一起。

(3)尺度因子K,即两个空间坐标系内的同一段直线的长度比值,实现尺度的比例转换。通常K值几乎等于1。

七参数其涉及到的七个参数为:X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。

参考资料来源:百度百科-四参数拟合

百度百科-七参数

SEM简单介绍,以下资料来源

因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。

一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。

历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).

SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。

因果关系:

究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。

举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:

3. 这时还有可能出现更多的潜在变量:

这里我又举另外一个例子,回归模型

在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。

我们在举另外一个例子“路径分析”

路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。

在这里我们总结一下:

回归分析简单的说就是:X真的影响Y 吗?

路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。

在这里要提一下因素模型(factor model)

在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。

举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。

相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。

这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/463834.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-04
下一篇2023-06-04

发表评论

登录后才能评论

评论列表(0条)

    保存