贝叶斯sem间接效应看法
模型是一个简单中介模型,假设是A对B有显著正向影响,做完路径分析之后,直接效应不显著,间接效应和总效应显著,那在报告结果的时候,是说直接效应不显著,所以假设不成立...
如图,我的模型是一个简单中介模型,假设是A对B有显著正向影响,做完路径分析之后,直接效应不显著,间接效应和总效应显著,那在报告结果的时候,是说直接效应不显著,所以假设不成立,还是说总效应显著,假设成立?
Amos有这个功能的,一般采用Bootstrap来处理。如果涉及多重中介,则需要使用贝叶斯语法自定义公式。
概率图模型是用图来表示变量概率依赖关系的理论,结合概率论与图论的知识,利用图来表示与模型有关的变量的联合概率分布。由图灵奖获得者Pearl开发出来。
如果用一个词来形容概率图模型(Probabilistic Graphical Model)的话,那就是“优雅”。对于一个实际问题,我们希望能够挖掘隐含在数据中的知识。概率图模型构建了这样一幅图,用观测结点表示观测到的数据,用隐含结点表示潜在的知识,用边来描述知识与数据的相互关系, 最后基于这样的关系图获得一个概率分布 ,非常“优雅”地解决了问题。
概率图中的节点分为隐含节点和观测节点,边分为有向边和无向边。从概率论的角度,节点对应于随机变量,边对应于随机变量的依赖或相关关系,其中 有向边表示单向的依赖,无向边表示相互依赖关系 。
概率图模型分为 贝叶斯网络(Bayesian Network)和马尔可夫网络(Markov Network) 两大类。贝叶斯网络可以用一个有向图结构表示,马尔可夫网络可以表 示成一个无向图的网络结构。更详细地说,概率图模型包括了朴素贝叶斯模型、最大熵模型、隐马尔可夫模型、条件随机场、主题模型等,在机器学习的诸多场景中都有着广泛的应用。
长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大。而且概率虽然未知,但最起码是一个确定的值。比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取不到白球,即θ只能有一个值,而且不论你取了多少次,取得白球的 概率θ始终都是1/2 ,即不随观察结果X 的变化而变化。
这种 频率派 的观点长期统治着人们的观念,直到后来一个名叫Thomas Bayes的人物出现。
托马斯·贝叶斯Thomas Bayes(1702-1763)在世时,并不为当时的人们所熟知,很少发表论文或出版著作,与当时学术界的人沟通交流也很少,用现在的话来说,贝叶斯就是活生生一民间学术“屌丝”,可这个“屌丝”最终发表了一篇名为“An essay towards solving a problem in the doctrine of chances”,翻译过来则是:机遇理论中一个问题的解。你可能觉得我要说:这篇论文的发表随机产生轰动效应,从而奠定贝叶斯在学术史上的地位。
这篇论文可以用上面的例子来说明,“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率θ是多少?”贝叶斯认为取得白球的概率是个不确定的值,因为其中含有机遇的成分。比如,一个朋友创业,你明明知道创业的结果就两种,即要么成功要么失败,但你依然会忍不住去估计他创业成功的几率有多大?你如果对他为人比较了解,而且有方法、思路清晰、有毅力、且能团结周围的人,你会不由自主的估计他创业成功的几率可能在80%以上。这种不同于最开始的“非黑即白、非0即1”的思考方式,便是 贝叶斯式的思考方式。
先简单总结下频率派与贝叶斯派各自不同的思考方式:
贝叶斯派既然把看做是一个随机变量,所以要计算的分布,便得事先知道的无条件分布,即在有样本之前(或观察到X之前),有着怎样的分布呢?
比如往台球桌上扔一个球,这个球落会落在何处呢?如果是不偏不倚的把球抛出去,那么此球落在台球桌上的任一位置都有着相同的机会,即球落在台球桌上某一位置的概率服从均匀分布。这种在实验之前定下的属于基本前提性质的分布称为 先验分布,或着无条件分布 。
其中,先验信息一般来源于经验跟历史资料。比如林丹跟某选手对决,解说一般会根据林丹历次比赛的成绩对此次比赛的胜负做个大致的判断。再比如,某工厂每天都要对产品进行质检,以评估产品的不合格率θ,经过一段时间后便会积累大量的历史资料,这些历史资料便是先验知识,有了这些先验知识,便在决定对一个产品是否需要每天质检时便有了依据,如果以往的历史资料显示,某产品的不合格率只有0.01%,便可视为信得过产品或免检产品,只每月抽检一两次,从而省去大量的人力物力。
而 后验分布 π(θ|X)一般也认为是在给定样本X的情况下的θ条件分布,而使π(θ|X)达到最大的值θMD称为 最大后验估计 ,类似于经典统计学中的 极大似然估计 。
综合起来看,则好比是人类刚开始时对大自然只有少得可怜的先验知识,但随着不断观察、实验获得更多的样本、结果,使得人们对自然界的规律摸得越来越透彻。所以,贝叶斯方法既符合人们日常生活的思考方式,也符合人们认识自然的规律,经过不断的发展,最终占据统计学领域的半壁江山,与经典统计学分庭抗礼。
条件概率 (又称后验概率)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。
比如上图,在同一个样本空间Ω中的事件或者子集A与B,如果随机从Ω中选出的一个元素属于B,那么这个随机选择的元素还属于A的概率就定义为在B的前提下A的条件概率:
联合概率:
边缘概率(先验概率):P(A)或者P(B)
贝叶斯网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型(directed acyclic graphical model),是一种概率图模型,于1985年由Judea Pearl首先提出。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。
贝叶斯网络的有向无环图中的节点表示随机变量
它们可以是可观察到的变量,或隐变量、未知参数等。认为有因果关系(或非条件独立)的变量或命题则用箭头来连接。若两个节点间以一个单箭头连接在一起,表示其中一个节点是“因(parents)”,另一个是“果(children)”,两节点就会产生一个条件概率值。
例如,假设节点E直接影响到节点H,即E→H,则用从E指向H的箭头建立结点E到结点H的有向弧(E,H),权值(即连接强度)用条件概率P(H|E)来表示,如下图所示:
简言之,把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,就形成了贝叶斯网络。其主要用来描述随机变量之间的条件依赖,用圈表示随机变量(random variables),用箭头表示条件依赖(conditional dependencies)。
此外,对于任意的随机变量,其联合概率可由各自的局部条件概率分布相乘而得出:
1. head-to-head
依上图,所以有:P(a,b,c) = P(a) P(b) P(c|a,b)成立,即在c未知的条件下,a、b被阻断(blocked),是独立的,称之为head-to-head条件独立。
2. tail-to-tail
考虑c未知,跟c已知这两种情况:
3. head-to-tail
还是分c未知跟c已知这两种情况:
wikipedia上是这样定义因子图的:将一个具有多变量的全局函数因子分解,得到几个局部函数的乘积,以此为基础得到的一个双向图叫做因子图(Factor Graph)。
通俗来讲,所谓因子图就是对函数进行因子分解得到的 一种概率图 。一般内含两种节点:变量节点和函数节点。我们知道,一个全局函数通过因式分解能够分解为多个局部函数的乘积,这些局部函数和对应的变量关系就体现在因子图上。
举个例子,现在有一个全局函数,其因式分解方程为:
其中fA,fB,fC,fD,fE为各函数,表示变量之间的关系,可以是条件概率也可以是其他关系。其对应的因子图为:
在概率图中,求某个变量的边缘分布是常见的问题。这问题有很多求解方法,其中之一就是把贝叶斯网络或马尔科夫随机场转换成因子图,然后用sum-product算法求解。换言之,基于因子图可以用 sum-product 算法 高效的求各个变量的边缘分布。
详细的sum-product算法过程,请查看博文: 从贝叶斯方法谈到贝叶斯网络
朴素贝叶斯(Naive Bayesian)是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。朴素贝叶斯原理简单,也很容易实现,多用于文本分类,比如垃圾邮件过滤。**朴素贝叶斯可以看做是贝叶斯网络的特殊情况:即该网络中无边,各个节点都是独立的。 **
朴素贝叶斯朴素在哪里呢? —— 两个假设 :
贝叶斯公式如下:
下面以一个例子来解释朴素贝叶斯,给定数据如下:
现在给我们的问题是,如果一对男女朋友,男生想女生求婚,男生的四个特点分别是不帅,性格不好,身高矮,不上进,请你判断一下女生是嫁还是不嫁?
这是一个典型的分类问题,转为数学问题就是比较p(嫁|(不帅、性格不好、身高矮、不上进))与p(不嫁|(不帅、性格不好、身高矮、不上进))的概率,谁的概率大,我就能给出嫁或者不嫁的答案!这里我们联系到朴素贝叶斯公式:
我们需要求p(嫁|(不帅、性格不好、身高矮、不上进),这是我们不知道的,但是通过朴素贝叶斯公式可以转化为好求的三个量,这三个变量都能通过统计的方法求得。
等等,为什么这个成立呢?学过概率论的同学可能有感觉了,这个等式成立的条件需要特征之间相互独立吧!对的!这也就是为什么朴素贝叶斯分类有朴素一词的来源,朴素贝叶斯算法是假设各个特征之间相互独立,那么这个等式就成立了!
但是为什么需要假设特征之间相互独立呢?
根据上面俩个原因,朴素贝叶斯法对条件概率分布做了条件独立性的假设,由于这是一个较强的假设,朴素贝叶斯也由此得名!这一假设使得朴素贝叶斯法变得简单,但有时会牺牲一定的分类准确率。
朴素贝叶斯优点 :
朴素贝叶斯缺点 :
理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。
朴素贝叶斯模型(Naive Bayesian Model)的 朴素(Naive)的含义是"很简单很天真" 地假设样本特征彼此独立. 这个假设现实中基本上不存在, 但特征相关性很小的实际情况还是很多的, 所以这个模型仍然能够工作得很好。
新闻分类 GitHub: 点击进入
【 机器学习通俗易懂系列文章 】
从贝叶斯方法谈到贝叶斯网络
01 贝叶斯算法 - 朴素贝叶斯
02 贝叶斯算法 - 案例一 - 鸢尾花数据分类
03 贝叶斯算法 - 案例二 - 新闻数据分类
之前聚类算法中讲了 无向图 的聚类算法 - 谱聚类 。
13 聚类算法 - 谱聚类
本章介绍的贝叶斯算法是 有向图 的聚类算法。
区别:
谱聚类 的无向图里的点里放的是 样本 。
贝叶斯网络 的有向图的点里放的是 样本的特征 。
把某个研究系统中涉及到的 随机变量 ,根据是否条件独立绘制在一个有向图中,就形成了贝叶斯网络。 贝叶斯网络(Bayesian Network) ,又称有向无 环图模型 (directed acyclic graphical model, DAG);
贝叶斯网络 是一种概率图模型,根据概率图的拓扑结构,考察一组随机变量:{X1,X2,...,Xn}及其N组条件概率分布(Conditional ProbabililtyDistributions, CPD)的性质。
当多个特征属性之间 存在着某种相关关系 的时候,使用朴素贝叶斯算法就没法解决这类问题,那么贝叶斯网络就是解决这类应用场景的一个非常好的算法。
分析: 很好理解上面的概念,先回顾下面的算法,朴素贝叶斯算法要求的是互相独立的事件形成出x1~xn,这些特征彼此概率互不影响,所以才能求出联合概率密度。贝叶斯网络算法就是来解决有关联的特征组成的样本分类的。
一般而言,贝叶斯网络的有向无环图中的节点表示随机变量,可以是可观察到的变量,或隐变量,未知参数等等。连接两个节点之间的箭头代表两个随机变量之间的因果关系(也就是这两个随机变量之间非条件独立);如果两个节点间以一个单箭头连接在一起,表示其中一个节点是“因”,另外一个节点是“果”,从而两节点之间就会产生一个条件概率值。
PS: 每个节点在给定其直接前驱的时候,条件独立于其非后继。
贝叶斯网络的关键方法是图模型,构建一个图模型我们需要把具有因果联系的各个变量用箭头连在一起。贝叶斯网络的有向无环图中的节点表示随机变量。连接两个节点的箭头代表此两个随机变量是具有因果关系的。
贝叶斯网络是模拟人的认知思维推理模式的,用一组条件概率以及有向无环图对不确定性因果推理关系建模。
目标,求P(a,b,c)
a的概率和任何别的特征都无关,所以先求a的概率:P(a)
b的生成和a有关。即a发生的情况下,b发生的概率:P(b|a)
c的生成和a、b有关。即a和b同事发生的情况下,c发生的概率。P(c|a,b)
有一天早晨,白尔摩斯离开他的房子的时候发现他家花园中的草地是湿的,有两种可能,第一:昨天晚上下雨了,第二:他昨天晚上忘记关掉花园中的喷水器,接下来,他观察他的邻居华生,发现他家花园中的草地也是湿的,因此,他推断,他家的草地湿了是因为昨天晚上下雨的缘故。
那么在贝叶斯网络中,哪些条件下我们可以认为是条件独立的?
条件一:
在C给定的条件下,a和b被阻断(blocked)是独立的。
即只要C给定了,a、b就独立。
条件独立:tail - to -tail
条件二:
在C给定的条件下,a和b被阻断(blocked)是独立的。
条件独立:head- to -tail
条件三:
在C未知的情况下,a和b被阻断(blocked),是独立的。
条件独立:head - to - head
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)