求高手帮我分下下氧化锌纳米线XRD图谱,图谱中的(002)是什么意思?

求高手帮我分下下氧化锌纳米线XRD图谱,图谱中的(002)是什么意思?,第1张

您好!

图谱中的(002)是什么意思?

答:是晶体的晶面,具体说来,是垂直于C轴的晶面。 你可以去了解一下miller index 米勒指数。

希望有所帮助!

本发明公开一种水热法制备纳米氧化锌的方法。步骤为:以木质素磺酸盐为表面活性剂,利用硝酸锌和氢氧化钠反应水热法制备纳米氧化锌。木质素磺酸盐是亚硫酸法制浆的副产品,其含有丰富的官能团,有良好的扩散性。本发明以木质素磺酸盐为表面活性剂,采用水热法制备纳米氧化锌,操作条件易于控制,设备简单,制备成本低,所制产物颗粒分布均匀,颗粒性能高,粒径分散性良好,分体团聚程度较小,形貌较好,易于实现工业化。

【专利说明】一种水热法制备纳米氧化锌的方法

【技术领域】

[0001]本发明涉及一种水热法制备纳米氧化锌的方法,特别涉及以木质素磺酸盐为表面活性剂制备纳米氧化锌的方法。

【背景技术】

[0002]近年来,半导体材料由于其广泛的应用而得到了深入的研究。具有宽的禁带(337eV)和大的激子结合能(60eV)的 氧化锌,是一种同时拥有半导体和压电特性以及由此导致各种独特性质的材料。纳米氧化锌作为一种新型功能型纳米材料,与传统氧化锌材料相比,它具有比表面积较大、化学活性较高、产品粒度为纳米级等优点。由于纳米材料所特有的表面效应、量子尺寸效应和宏观量子隧道效应等,使得纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面比一般氧化锌产品无法比拟的特殊性能和新用途,可用来制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压敏材料、压电材料、高效催化剂等,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前

-5^ O

[0003]水热法又称为热液法,是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热,产生一个高温高压的环境,加速离子反应和促进水解反应,在水溶液或蒸气流体中制备氧化物,再经过分离和热处理得到氧化物纳米粒子,可使一些在常温常压下反应速率很慢的热力学反应在水热条件下实现反应快速化。本发明以木质素磺酸盐为表面活性剂,采用水热法制备纳米氧化锌,操作条件易于控制,设备简单,制备成本低,所制产物颗粒分布均匀,颗粒性能高,粒径分散性良好,分体团聚程度较小,形貌较好,易于实现工业化。

[0004]

【发明内容】

本发明的目的是采用木质素磺酸盐为表面活性剂,通过水热法合成纳米氧化锌,工艺简单,原料易于得到,成本低廉,污染较少,适于工业化生产。

[0005]本发明的技术方案如下:

A、室温下取浓度为0.1 mol.1的锌盐溶液,按每50mL锌盐溶液加入0.05-0.2g木质素磺酸盐,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;

B、将上述溶液移入高压釜中,在100-200°C温度下反应10-22h,冷却至室温;

C、将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;

D、将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C; 本发明的一个较优公开例中,所述的木质素磺酸盐是木质素磺酸钠。

[0006]本发明的一个较优公开例中,所用的锌盐为Zn (NO3) 2。

[0007]本发明的一个较优公开例中,步骤A中按每50mL锌盐溶液加入0.1_0.15g木质素

磺酸盐。[0008]本发明的一个较优公开例中,步骤B中在高压釜中150°C温度下反应14_18h。

[0009]本实验所用的试剂皆为分析纯,均为市售。

[0010]有益效果

本发明以木质素磺酸盐为表面活性剂,采用水热法制备纳米氧化锌,操作条件易于控制,设备简单,制备成本低,所制产物颗粒分布均匀,颗粒性能高,粒径分散性良好,分体团聚程度较小,形貌较好,易于实现工业化。

【专利附图】

【附图说明】

[0011]图1样品的X射线衍射图谱(XRD),为实施例2样品的XRD图谱。

[0012]图2样品的扫描电镜图(SEM),为实施例1样品的SEM图。

[0013]【具体实施方式】

下面结合具体实施实例对本发明做进一步说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。

[0014]实施例1

室温下取浓度为0.1 mo l.L-1的Zn (NO3) 2溶液,按每50mL Zn (NO3) 2溶液加入0.2g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在100°C温度下反应18h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。样品的SEM图如图2。

[0015]实施例2

室温下取浓度为0.1 mol.L—1的211_3)2溶液,按每501^ Zn (NO3) 2溶液加入0.1g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在100°C温度下反应22h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。样品的XRD图如图1。

[0016]实施例3

室温下取浓度为0.1 mol.L—1的211_3)2溶液,按每501^ Zn (NO3) 2溶液加入0.1g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在100°C温度下反应10h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。

实施例4

室温下取浓度为0.1 mol.L-1的Zn (NO3) 2溶液,按每50mL Zn (NO3) 2溶液加入0.05g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在150°C温度下反应14h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。

实施例5

室温下取浓度为0.1 mol.L-1的Zn (NO3) 2溶液,按每50mLZn (NO3) 2溶液加入0.2g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在200°C温度下反应18h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。

实施例6

室温下取浓度为0.1 mol.L-1的Zn(NO3)2溶液,按每50mL Zn(NO3)2溶液加入0.15g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在100°C温度下反应14h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。

【权利要求】

1.一种水热法制备纳米氧化锌的方法,按下述步骤进行: A、室温下取浓度为0.1 mo 1.L—1的锌盐溶液,按每50mL锌盐溶液加入0.05-0.2g木质素磺酸盐,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止; B、将上述溶液移入高压釜中,在100-200°C温度下反应10-22h,冷却至室温; C、将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离; D、将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。

2.根据权利要求1中所述的一种采用水热法制备纳米氧化锌的方法,其特征在于所述的木质素磺酸盐是木质素磺酸钠。

3.根据权利要求1中所述的一种采用水热法制备纳米氧化锌的方法,其特征在于步骤A中所述的锌盐为Zn (NO3) 2。

4.根据权利要求1中所述的一种采用水热法制备纳米氧化锌的方法,其特征在于步骤A中按每50mL锌盐溶液·加入0.1-0.15g木质素磺酸盐。

5.根据权利要求1中所述的一种采用水热法制备纳米氧化锌的方法,其特征在于步骤B中在高压釜中150°C温度下反应14-18h。

聚焦离子束扫描电镜双束系统(FIB-SEM)是在SEM的基础上增加了聚焦离子束镜筒的双束系统,同时具备微纳加工和成像的功能,广泛应用于科学研究和半导体芯片研发等多个领域。本文记录一下FIB-SEM在材料研究中的应用。

以目前实验室配有的FIB-SEM的型号是蔡司的Crossbeam 540为例进行如下分析,离子束最高成像分辨率为3nm,电子束最高分辨率为0.9nm。该系统的主要部件及功能如下:

1.离子束: 溅射(切割、抛光、刻蚀);刻蚀最小线宽10nm,切片最薄3nm。 

2.电子束 : 成像和实时观察

3.GIS(气体注入系统): 沉积和辅助刻蚀;五种气体:Pt、W、SiO2、Au、XeF2(增强刻蚀SiO2)

4.纳米机械手:  转移样品 

5.EDS: 成分定量和分布

6.EBSD : 微区晶向及晶粒分布

7.Loadlock(样品预抽室): 快速进样,进样时间只需~1min

由上述FIB-SEM的一个部件或多个部件联合使用,可以实现在材料研究中的多种应用,具体应用实例如下:

图2a和b分别是梳子形状的CdS微米线的光学显微镜和扫描电镜照片,从光学显微镜照片可以看出在CdS微米线节点处内部含有其他物质,但无法确定是什么材料和内部形貌。利用FIB-SEM在节点处定点切割截面,然后对截面成像和做EDS mapping,如图2c、d、e和f所示,可以很直观的得到在CdS微米线的节点处内部含有Sn球。

FIB-SEM制备TEM样品的常规步骤如图3所示,主要有以下几步:

1)在样品感兴趣位置沉积pt保护层

2)在感兴趣区域的两侧挖大坑,得到只有约1微米厚的薄片

3)对薄片进行U-cut,将薄片底部和一侧完全切断

4)缓慢移下纳米机械手,轻轻接触薄片悬空的一端后,沉积pt将薄片和纳米机械手焊接牢固,然后切断薄片另一侧,缓慢升起纳米机械手即可提出薄片

5)移动样品台和纳米机械手,使薄片与铜网(放置TEM样品用)轻轻接触,然后沉积pt将薄片和铜网焊接牢固,将薄片和纳米机械手连接的一端切断,移开纳米机械手,转移完成

6)最后一步为减薄和清洗,先用大加速电压离子束将薄片减薄至150nm左右,再利用低电压离子束将其减薄至最终厚度(普通TEM样品<100nm,高分辨TEM样品50nm左右,球差TEM样品<50nm)

一种如图4a所示的MoS2场效应管,需要确定实际器件中MoS2的层数及栅极(Ag纳米线)和MoS2之间的距离。利用FIB-SEM可以准确的在MoS2场效应管的沟道位置,垂直于Ag纳米线方向,提出一个薄片,并对其进行减薄,制备成截面透射样。在TEM下即可得到MoS2的层数为14层(图4c), Ag纳米线和MoS2之间的距离为30nm(图4b)。

图5是一种锰酸锂材料的STEM像,该样品是由FIB-SEM制备,图中可以看到清晰的原子像。这表明FIB-SEM制备的该球差透射样非常薄并且有很少的损伤层。

FIB-SEM还可以进行微纳图形的加工。

图6a 是FIB-SEM在Au/SiO2上制备的光栅,光栅周期为150nm,光栅开口为75nm。

图6b 是利用FIB-SEM在Mo/石英上做的切仑科夫辐射源针尖,针尖曲率半径为17nm。

图6c 是在Au膜上加工的三维对称结构蜘蛛网。

图6d 是FIB-SEM在硅上刻蚀的贺新年图案,图中最小细节尺寸仅有25nm。

FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。大概过程如图7a所示, FIB切掉一定厚度的样品,SEM拍一张照片,重复此过程,连续拍上百张照片,然后将上百张切片照片重构出三维形貌。图7b是一种多孔材料内部3×5×2um范围的三维重构结果,其实验数据是利用FIB-SEM采集,三维重构是利用Avizo软件得到,其分辩率可达纳米级,展示了内部孔隙的三维空间分布,并可以计算出孔隙的半径大小、体积及曲率等参数。

利用FIB-SEM配有的纳米机械手及配合使用离子束沉积Pt,可以实现微米材料的转移,即把某种材料从一个位置(衬底)转移到特定位置(衬底),并固定牢固。图8是把四针氧化锌微米线从硅片转移到两电极的沟道之间,从而制备成两个微米线间距只有1um的特殊器件。

最后,FIB-SEM还有很多其他的应用,例如三维原子探针样品制备,芯片线路修改等。总之FIB-SEM是材料研究中一个非常重要的手段。

不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/467362.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-05
下一篇2023-06-05

发表评论

登录后才能评论

评论列表(0条)

    保存