ssh登录的认证方式有:Password、RSA、DSA、ECC、Password-RSA、Password-DSA、Password-ECC和ALL。
1、Password认证
Password认证是一种基于“用户名+口令”的认证方式。通过AAA为每个SSH用户配置相应的密码,在通过SSH登录时,输入正确的用户名和密码就可以实现登录。
2、RSA认证
RSA认证是一种基于客户端私钥的认证方式。RSA是一种公开密钥加密体系,基于非对称加密算法。RSA密钥也是由公钥和私钥两部分组成,在配置时需要将客户端生成的RSA密钥中的公钥部分拷贝输入至服务器中,服务器用此公钥对数据进行加密。
3、DSA认证
DSA认证是一种类似于RSA的认证方式,DSA认证采用数字签名算法进行加密。
4、ECC认证
ECC认证是一种椭圆曲线算法,与RSA相比,在相同安全性能下密钥长度短、计算量小、处理速度快、存储空间小、带宽要求低。
5、Password-RSA认证
SSH服务器对登录的用户同时进行密码认证和RSA认证,只有当两者同时满足情况下,才能认证通过。
6、Password-DSA认证
SSH服务器对登录的用户同时进行密码认证和DSA认证,只有当两者同时满足情况下,才能认证通过。
7、Password-ECC认证
SSH服务器对登录的用户同时进行密码认证和ECC认证,只有当两者同时满足情况下,才能认证通过。
8、ALL认证
SSH服务器对登录的用户进行公钥认证或密码认证,只要满足其中任何一个,就能认证通过。
SSH结构层次
1、表示层
表示层主要涉及Struts的功能,在这一层,首先通过JSP页面实现交互界面,负责传送用户请求和接收响应,然后Struts根据配置文件将接收到的用户请求委派给相应的Action处理。
2、业务逻辑层
业务层主要涉及Spring的功能,在这一层,管理服务组件负责向Struts配置好的对应Action提供业务模型,该组件的对象数据处理组件完成业务逻辑,并提供事务处理等容器组件以提升系统性能和保证数据的完整性。
3、数据持久层
持久层主要涉及Hibernate的功能,Hibernate实现了数据持久化功能,使得程序员可以通过面向对象地编程思维来操作数据库。在这一层中,依赖于Hibernate的对象化映射和数据库交互,处理Spring中的DAO组件请求的数据,并返回处理结果。
非对称加密需要两个密钥:公钥(publickey) 和私钥 (privatekey)。公钥和私钥是一对,如果用公钥对数据加密,那么只能用对应的私钥解密。如果用私钥对数据加密,只能用对应的公钥进行解密。因为加密和解密用的是不同的密钥,所以称为非对称加密。
非对称加密算法的保密性好,它消除了最终用户交换密钥的需要。但是加解密速度要远远慢于对称加密,在某些极端情况下,甚至能比对称加密慢上1000倍。
算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。对称密码体制中只有一种密钥,并且是非公开的,如果要解密就得让对方知道密钥。所以保证其安全性就是保证密钥的安全,而非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。
RSA、Elgamal、背包算法、Rabin、D-H、ECC (椭圆曲线加密算法)。使用最广泛的是 RSA 算法,Elgamal 是另一种常用的非对称加密算法。
收信者是唯一能够解开加密信息的人,因此收信者手里的必须是私钥。发信者手里的是公钥,其它人知道公钥没有关系,因为其它人发来的信息对收信者没有意义。
客户端需要将认证标识传送给服务器,此认证标识 (可能是一个随机数) 其它客户端可以知道,因此需要用私钥加密,客户端保存的是私钥。服务器端保存的是公钥,其它服务器知道公钥没有关系,因为客户端不需要登录其它服务器。
数字签名是为了表明信息没有受到伪造,确实是信息拥有者发出来的,附在信息原文的后面。就像手写的签名一样,具有不可抵赖性和简洁性。
简洁性:对信息原文做哈希运算,得到消息摘要,信息越短加密的耗时越少。
不可抵赖性:信息拥有者要保证签名的唯一性,必须是唯一能够加密消息摘要的人,因此必须用私钥加密 (就像字迹他人无法学会一样),得到签名。如果用公钥,那每个人都可以伪造签名了。
问题起源:对1和3,发信者怎么知道从网上获取的公钥就是真的?没有遭受中间人攻击?
这样就需要第三方机构来保证公钥的合法性,这个第三方机构就是 CA (Certificate Authority),证书中心。
CA 用自己的私钥对信息原文所有者发布的公钥和相关信息进行加密,得出的内容就是数字证书。
信息原文的所有者以后发布信息时,除了带上自己的签名,还带上数字证书,就可以保证信息不被篡改了。信息的接收者先用 CA给的公钥解出信息所有者的公钥,这样可以保证信息所有者的公钥是真正的公钥,然后就能通过该公钥证明数字签名是否真实了。
RSA 是目前最有影响力的公钥加密算法,该算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,即公钥,而两个大素数组合成私钥。公钥是可发布的供任何人使用,私钥则为自己所有,供解密之用。
A 要把信息发给 B 为例,确定角色:A 为加密者,B 为解密者。首先由 B 随机确定一个 KEY,称之为私钥,将这个 KEY 始终保存在机器 B 中而不发出来;然后,由这个 KEY 计算出另一个 KEY,称之为公钥。这个公钥的特性是几乎不可能通过它自身计算出生成它的私钥。接下来通过网络把这个公钥传给 A,A 收到公钥后,利用公钥对信息加密,并把密文通过网络发送到 B,最后 B 利用已知的私钥,就能对密文进行解码了。以上就是 RSA 算法的工作流程。
由于进行的都是大数计算,使得 RSA 最快的情况也比 DES 慢上好几倍,无论是软件还是硬件实现。速度一直是 RSA 的缺陷。一般来说只用于少量数据加密。RSA 的速度是对应同样安全级别的对称密码算法的1/1000左右。
比起 DES 和其它对称算法来说,RSA 要慢得多。实际上一般使用一种对称算法来加密信息,然后用 RSA 来加密比较短的公钥,然后将用 RSA 加密的公钥和用对称算法加密的消息发送给接收方。
这样一来对随机数的要求就更高了,尤其对产生对称密码的要求非常高,否则的话可以越过 RSA 来直接攻击对称密码。
和其它加密过程一样,对 RSA 来说分配公钥的过程是非常重要的。分配公钥的过程必须能够抵挡中间人攻击。假设 A 交给 B 一个公钥,并使 B 相信这是A 的公钥,并且 C 可以截下 A 和 B 之间的信息传递,那么 C 可以将自己的公钥传给 B,B 以为这是 A 的公钥。C 可以将所有 B 传递给 A 的消息截下来,将这个消息用自己的密钥解密,读这个消息,然后将这个消息再用 A 的公钥加密后传给 A。理论上 A 和 B 都不会发现 C 在偷听它们的消息,今天人们一般用数字认证来防止这样的攻击。
(1) 针对 RSA 最流行的攻击一般是基于大数因数分解。1999年,RSA-155 (512 bits) 被成功分解,花了五个月时间(约8000 MIPS 年)和224 CPU hours 在一台有3.2G 中央内存的 Cray C916计算机上完成。
RSA-158 表示如下:
2009年12月12日,编号为 RSA-768 (768 bits, 232 digits) 数也被成功分解。这一事件威胁了现通行的1024-bit 密钥的安全性,普遍认为用户应尽快升级到2048-bit 或以上。
RSA-768表示如下:
(2) 秀尔算法
量子计算里的秀尔算法能使穷举的效率大大的提高。由于 RSA 算法是基于大数分解 (无法抵抗穷举攻击),因此在未来量子计算能对 RSA 算法构成较大的威胁。一个拥有 N 量子位的量子计算机,每次可进行2^N 次运算,理论上讲,密钥为1024位长的 RSA 算法,用一台512量子比特位的量子计算机在1秒内即可破解。
DSA (Digital Signature Algorithm) 是 Schnorr 和 ElGamal 签名算法的变种,被美国 NIST 作为 DSS (DigitalSignature Standard)。 DSA 是基于整数有限域离散对数难题的。
简单的说,这是一种更高级的验证方式,用作数字签名。不单单只有公钥、私钥,还有数字签名。私钥加密生成数字签名,公钥验证数据及签名,如果数据和签名不匹配则认为验证失败。数字签名的作用就是校验数据在传输过程中不被修改,数字签名,是单向加密的升级。
椭圆加密算法(ECC)是一种公钥加密算法,最初由 Koblitz 和 Miller 两人于1985年提出,其数学基础是利用椭圆曲线上的有理点构成 Abel 加法群上椭圆离散对数的计算困难性。公钥密码体制根据其所依据的难题一般分为三类:大整数分解问题类、离散对数问题类、椭圆曲线类。有时也把椭圆曲线类归为离散对数类。
ECC 的主要优势是在某些情况下它比其他的方法使用更小的密钥 (比如 RSA),提供相当的或更高等级的安全。ECC 的另一个优势是可以定义群之间的双线性映射,基于 Weil 对或是 Tate 对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。不过一个缺点是加密和解密操作的实现比其他机制花费的时间长。
ECC 被广泛认为是在给定密钥长度的情况下,最强大的非对称算法,因此在对带宽要求十分紧的连接中会十分有用。
比特币钱包公钥的生成使用了椭圆曲线算法,通过椭圆曲线乘法可以从私钥计算得到公钥, 这是不可逆转的过程。
https://github.com/esxgx/easy-ecc
Java 中 Chipher、Signature、KeyPairGenerator、KeyAgreement、SecretKey 均不支持 ECC 算法。
https://www.jianshu.com/p/58c1750c6f22
DH,全称为"Diffie-Hellman",它是一种确保共享 KEY 安全穿越不安全网络的方法,也就是常说的密钥一致协议。由公开密钥密码体制的奠基人 Diffie 和 Hellman 所提出的一种思想。简单的说就是允许两名用户在公开媒体上交换信息以生成"一致"的、可以共享的密钥。也就是由甲方产出一对密钥 (公钥、私钥),乙方依照甲方公钥产生乙方密钥对 (公钥、私钥)。
以此为基线,作为数据传输保密基础,同时双方使用同一种对称加密算法构建本地密钥 (SecretKey) 对数据加密。这样,在互通了本地密钥 (SecretKey) 算法后,甲乙双方公开自己的公钥,使用对方的公钥和刚才产生的私钥加密数据,同时可以使用对方的公钥和自己的私钥对数据解密。不单单是甲乙双方两方,可以扩展为多方共享数据通讯,这样就完成了网络交互数据的安全通讯。
具体例子可以移步到这篇文章: 非对称密码之DH密钥交换算法
参考:
https://blog.csdn.net/u014294681/article/details/86705999
https://www.cnblogs.com/wangzxblog/p/13667634.html
https://www.cnblogs.com/taoxw/p/15837729.html
https://www.cnblogs.com/fangfan/p/4086662.html
https://www.cnblogs.com/utank/p/7877761.html
https://blog.csdn.net/m0_59133441/article/details/122686815
https://www.cnblogs.com/muliu/p/10875633.html
https://www.cnblogs.com/wf-zhang/p/14923279.html
https://www.jianshu.com/p/7a927db713e4
https://blog.csdn.net/ljx1400052550/article/details/79587133
https://blog.csdn.net/yuanjian0814/article/details/109815473
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)