以下为转贴:
计算两组变量之间相关系数的最好(即最容易也最准确)方法是用LISREL、AMOS等结构方程模型(SEM)。如果A1-A3是一个潜在因子、B1-B5是另一个潜在因子。SEM可以同时检验这两个潜在因子内部各观测变量是否相关以及两个因子之间是否相关。
如果你没学过SEM而只想在SPSS里做,有几种变通方法,但是都比较麻烦一点,其结果略有差别。
一、因子分析(EFA):先分别对A1-A3和B1-B5做因子分析、并从中生成两个因子、最后在相关分析中计算因子之间的相关系数。如果这两组变量(尤其是B1-B5)每组各自存在2个或更多的因子,就有问题了。(当然,如果这种情况发生,用其它方法同样也会有问题。)
二、General Linear Model(GLM):选"Multivariate", 将A1-A3放入"Dependent Variables"、B1-B5放入"Covariate(s)",执行后在“Test of Between-Subjects Effects"的表底部,找到对应于A1-A3的三个"R Squared" ,求其平均,再求其平方根(squared root),就是两组变量的相关系数了。
三、在MANOVA里启用其Canonical Correlation,SPSS菜单中已找不到MANOVA了,要写如下的syntax:
MANOVA a1 a2 a3 WITH b1 b2 b3 b4 b5
/DISCRIM ALL ALPHA(1)
/PRINT=SIG(EIGEN DIM)
其产生很多个表格,最后的“Analysis of Variance -- design 1:Estimates of effects for canonical variables”给出了类似GLM的R Squared,然后再求平方根
四、如果使用SPSS15,它提供了一个"Canonical Correlations.sps"的syntax,可以调用,其结果的解读如上。
取值范围在0-1之间比较好。Amos标准化路径系数类似于回归中的标准化回归系数,取值范围在0-1之间。路径系数的平方表示潜变量对测量题目方差的解释比率,如果Amos标准化路径系数大于1,一种可能的情况是外源变量之间的相关性太强,考虑把两个相关性很强的因子合并在一起。另外,数据质量差也有可能导致标准化路径系数大于1。这种情况比较麻烦,可能需要你去做一次数据清洗工作,提升数据的质量。在路径系数都显著的前提下,直接比较标准化路径系数,或者用amos自带的pairwise parameters功能,若CR值大于1.96,差异显著,设置完全自由模型与部分限制条件模型,两个进行对比,看是否存在显著差异。
大于0.4。结构模型的路径系数要看显著性检验的结果,测量模型各个测量变量和潜变量的相关系数至少要大于0.4。
因此我们不可能单凭路径系数的大小来判定其是否显著,就算就路径系数接近1,如果标准误更大,那路径系数的t检验值也会相当小,甚至无限接近0.合理的说法应该是路径系数t检验的t值多大时,路径系数显著不等于0,那我们知道,大样本时,t的绝对值大于1.96则显著。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)