芯片的本质就是将大规模的集成电路小型化,并且封装在方寸之间的空间内。英特尔10nm一个单位占面积54*44nm,每平方毫米1.008亿个晶体管。nm(纳米)跟厘米、分米、米一样是长度的度量单位,1纳米等于10的负9次方米。1纳米相当于4倍原子大小,是一根头发丝直径的10万分之一,比单个细菌(5微米)长度还要小得多。
芯片制造的过程就如同房子一样,先由晶圆作为地基,再层层往上堆叠电路和晶体管,完成所期望的造型。
芯片有各式各样封装形式
芯片封装最初定义是保护芯片免受周围环境的影响,包括来自物理、化学方面的影响。如今的芯片封装,是指安装半导体集成电路芯片用的外壳,起着安放、固定、密封、保护芯片和增强电热性能的作用,是沟通芯片内部世界与外部电路的桥梁(芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接)。
芯片的工艺制程nm数越小代表越先进根据国际半导体技术蓝图(ITRS)的规定,我们常所说的芯片14nm、12nm、10mm、7nm就是用来描述半导体制程工艺的节点代数,通常以晶体管的半节距(half-pitch)或栅极长度(gatelength)等特征尺寸来表示,以衡量集成电路工艺水平。
在不同半导体元件上,所描述的对象是不一样的,比如:在DRAM芯片中,描述的是在DRAM单元中两条金属线间最小允许间距Pitch值的一半长度Half-Pitch半节距长度;而用在CPU上时,描述的则是CPU晶体管中栅极的长度。
在电子显微镜下,32nm和22nm晶体管
但栅极长度并不代表一切,栅极之间的距离和内连接间距也是决定性能的关键要素,这两个距离决定了单位面积内晶体管的数量。
从晶体管密度来看,2014
年发布的英特尔14nm节点为每平方毫米3750万个晶体管,略低于台积电每平方毫米4800万及三星每平方毫米5100万水平。英特尔10nm节点晶体管密度为每平方毫米1.008亿个,三星7nm节点为每平方毫米1.0123亿,基本持平;
台积电宣称初代7nm节点晶体管密度为16nm节点的约3倍、10nm节点的1.6倍,由此推算每平方毫米约8000万个晶体管,略低于英特尔10nm节点水平;而
2019 年台积电采用 EUV 工艺的 N7+节点也有望量产,晶体管密度提升20%,由此计算晶体管密度达到每平方毫米 1
亿个左右水平,将与英特尔、三星 2019
年量产工艺基本一致。
工艺制程的进步可以提高芯片的性能性能的提高具体包括了三个方面:规模增大、频率提高、功耗下降。规模对应的工艺指标主要包括晶体管密度、栅极间距、最小金属间距等。频率和功耗对应指标主要包括栅极长度、鳍片高度等。晶体管密度提高,可以扩大芯片的晶体管规模,增加并行工作的单元或核心,或者缩小芯片面积,提高良率并降低单位成本。
栅极长度越小,可使芯片的频率提高或者功耗下降。栅极长度缩小(或者沟道长度缩小)使得源极与漏极之间距离缩小,电子仅需流动较短的距离就能够运行,从而可以增加晶体管开关切换频率,提升芯片工作频率;另一方面,栅极长度缩小、电子流动距离减小可以减低内阻,降低所需导通电压,芯片工作电压降低,在相同工作频率下电压下降带来功耗降低(动态功耗
P=C*V^2*f,功耗与电压的平方、频率成正比)。
芯片频率的提高与功耗下降两个目标此消彼长,不可兼得。晶体管的功耗包括静态功耗及动态功耗两部分。静态功耗是电路稳定时的功耗,即常规的电压乘电流;动态功耗指电容充放电功耗和短路功耗,即晶体管在做
1 和 0
的相互转换时会根据转换频率的高低产生不同大小的功耗;
根据登德尔缩放比例定律,晶体管面积的缩小使得其所消耗的电压以及电流会以差不多相同的比例缩小。比如:晶体管的大小减半,静态功耗将会降至四分之一(电压电流同时减半)。在产业初期根据登纳德缩放比例,设计者可以大大地提高芯片的时钟频率,因为提高频率所带来的更多的动态功耗会和减小的静态功耗相抵消。
大概在
2005
年之后,漏电现象的出现打破了原先登纳德所提出的定律,使得晶体管在往更小工艺制作时候的静态功耗不减反增,同时也带来了很大的热能转换,使得芯片的散热成为了急需解决的问题。
因而芯片已无法继续在增加频率的同时降低总体功耗,根据动态功耗 P=C*V^2*f 可以得出,频率提高与功耗下降两个目标的关系是此消彼长的,需要根据芯片设计可以在两者之间寻求平衡。
在栅极长度(或沟道长度)缩小到一定程度后,就很容易产生量子隧穿效应,会产生较大的电流泄漏问题。所以才出现FinFET即鳍式场效应晶体管技术,晶体管从2D平面结构进入3D鳍式结构,提高鳍片高度(FinHeight),可以减少漏电的发生,进一步提高性能或降低功耗。
在FinFET结构中,三个表面被栅极围绕,能有效控制泄漏。提高鳍片高度,栅极对电流的控制能力更强,可控性的提高使得栅极能够使用更低的电压来切换开关,使用更少能量即可以开启/关闭。同时电子在三个表面流动,增加了流动电子量,进一步提高了性能。
持续提高芯片性能是先进制程的核心追求历年先进制程均率先应用于旗舰级智能手机AP或计算机CPU等。手机主芯片通常采用最先进两代工艺打造,旗舰手机主芯片走在制程前沿,最先进制程推出后即开始采用,新制程出现后向下转移,而中低端手机主芯片通常采用次顶级制程打造。
目前7nm及10nm主要应用包括高端手机AP/SoC、个人电脑及服务器CPU、矿机ASIC
等。14nm主要应用包括中高端手机AP/SoC、显卡GPU、FPGA 等。较为成熟的28nm
节点主要应用包括中低端手机、平板、机顶盒、路由器等主芯片。
先进制程竞争已成为影响芯片决定因素
工艺提升对于芯片性能提升影响明显。工艺提升带来的作用有频率提升以及架构优化两个方面。一方面,工艺的提升与频率紧密相连,使得芯片主频得以提升;另一方面工艺提升带来晶体管规模的提升,从而支持更加复杂的微架构或核心,带来架构的提升。
随着制程节点进步,可以发现频率随工艺增长的斜率已经减缓,由于登德尔缩放定律的失效以及随之而来的散热问题,单纯持续提高芯片时钟频率变得不再现实,厂商也逐渐转而向低频多核架构的研究。
以上个人浅见,欢迎批评指正。认同我的看法,请点个赞再走,感谢!喜欢我的,请关注我,再次感谢!
sem的意思是:
1、abbr. 扫描式电子显微镜(scanning electron microscope);标准电子组件(Standard Electronic Modules)
2、n. (Sem)(泰、柬)森(人名);(Sem)(西、挪)塞姆(人名)
【读音】英 [,es i: 'em]
【短语】
1、SEM Analysis 扫描电镜分析 扫描电子显微镜分析 sem分析
2、sem image sem图像 sem图
3、sem break 空白时间
4、sem valor 无用
5、SEM WATCH 搜索引擎营销观察
6、TSINGHUA SEM 理学院 清华经管学院 清华大学经济管理学院 大学经济管理学院
扩展资料
sem的近义词
seminar
【读音】英 [ˈsemɪnɑː(r)] 美 [ˈsemɪnɑːr]
【意思】n. 讨论会,研讨班
【短语】
1、seminar course 研究学程 专题研究科目 研究科目
2、Olympic Seminar 奥运主题讲座
3、Advanced seminar 高级研讨会
4、Basic Seminar 突破性领导力基础课程 基本课程 真善美讲座
5、Business Seminar 商务研讨会
6、Joint Seminar 双边学术研讨会
SEM、TEM、XRD、AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、
一、名称不同
1、SEM,英文全称:Scanningelectronmicroscope,中文称:扫描电子显微镜。
2、TEM,英文全称:TransmissionElectronMicroscope,中文称:透射电子显微镜。
3、XRD,英文全称:Diffractionofx-rays,中文称:X射线衍射。
4、AES,英文全称:AugerElectronSpectroscopy,中文称:俄歇电子能谱。
5、STM,英文全称:ScanningTunnelingMicroscope,中文称:扫描隧道显微镜。
6、AFM,英文全称:AtomicForceMicroscope,中文称:原子力显微镜。
二、工作原理不同
1.扫描电子显微镜的原理是用高能电子束对样品进行扫描,产生各种各样的物理信息。通过接收、放大和显示这些信息,可以观察到试样的表面形貌。
2.透射电子显微镜的整体工作原理如下:电子枪发出的电子束经过冷凝器在透镜的光轴在真空通道,通过冷凝器,它将收敛到一个薄,明亮而均匀的光斑,辐照样品室的样品。通过样品的电子束携带着样品内部的结构信息。通过样品致密部分的电子数量较少,而通过稀疏部分的电子数量较多。
物镜会聚焦点和一次放大后,电子束进入第二中间透镜和第一、第二投影透镜进行综合放大成像。最后,将放大后的电子图像投影到观察室的荧光屏上。屏幕将电子图像转换成可视图像供用户观察。
3、x射线衍射(XRD)的基本原理:当一束单色X射线入射晶体,因为水晶是由原子规则排列成一个细胞,规则的原子之间的距离和入射X射线波长具有相同的数量级,因此通过不同的原子散射X射线相互干涉,更影响一些特殊方向的X射线衍射,衍射线的位置和强度的空间分布,晶体结构密切相关。
4.入射的电子束和材料的作用可以激发原子内部的电子形成空穴。从填充孔到内壳层的转变所释放的能量可能以x射线的形式释放出来,产生特征性的x射线,也可能激发原子核外的另一个电子成为自由电子,即俄歇电子。
5.扫描隧道显微镜的工作原理非常简单。一个小电荷被放在探头上,电流从探头流出,穿过材料,到达下表面。当探针通过单个原子时,通过探针的电流发生变化,这些变化被记录下来。
电流在流经一个原子时涨落,从而非常详细地描绘出它的轮廓。经过多次流动后,人们可以通过绘制电流的波动得到构成网格的单个原子的美丽图画。
6.原子力显微镜的工作原理:当原子间的距离减小到一定程度时,原子间作用力迅速增大。因此,样品表面的高度可以直接由微探针的力转换而来,从而获得样品表面形貌的信息。
三、不同的功能
1.扫描电子显微镜(SEM)是介于透射电子显微镜和光学显微镜之间的一种微观形貌观察方法,可以直接利用样品表面材料的材料性质进行微观成像。
扫描电子显微镜具有高倍放大功能,可连续调节20000~200000倍。它有一个大的景深,一个大的视野,一个立体的形象,它可以直接观察到各种样品在不均匀表面上的细微结构。
样品制备很简单。目前,所有的扫描电镜设备都配备了x射线能谱仪,可以同时观察微观组织和形貌,分析微区成分。因此,它是当今非常有用的科学研究工具。
2.透射电子显微镜在材料科学和生物学中有着广泛的应用。由于电子容易散射或被物体吸收,穿透率低,样品的密度和厚度会影响最终成像质量。必须制备超薄的薄片,通常为50~100nm。
所以当你用透射电子显微镜观察样品时,你必须把它处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常挂在预处理过的铜线上观察。
3X射线衍射检测的重要手段的人们意识到自然,探索自然,尤其是在凝聚态物理、材料科学、生活、医疗、化工、地质、矿物学、环境科学、考古学、历史、和许多其他领域发挥了积极作用,不断拓展新领域、新方法层出不穷。
特别是随着同步辐射源和自由电子激光的兴起,x射线衍射的研究方法还在不断扩展,如超高速x射线衍射、软x射线显微术、x射线吸收结构、共振非弹性x射线衍射、同步x射线层析显微术等。这些新的X射线衍射检测技术必将为各个学科注入新的活力。
4,俄歇电子在固体也经历了频繁的非弹性散射,可以逃避只是表面的固体表面原子层的俄歇电子,电子的能量通常是10~500电子伏特,他们的平均自由程很短,约5~20,所以俄歇电子能谱学调查是固体表面。
俄歇电子能谱通常采用电子束作为辐射源,可以进行聚焦和扫描。因此,俄歇电子能谱可用于表面微观分析,并可直接从屏幕上获得俄歇元素图像。它是现代固体表面研究的有力工具,广泛应用于各种材料的分析,催化、吸附、腐蚀、磨损等方面的研究。
5.当STM工作时,探头将足够接近样品,以产生具有高度和空间限制的电子束。因此,STM具有很高的空间分辨率,可以用于成像工作中的科学观测。
STM在加工的过程中进行了表面上可以实时成像进行了表面形态,用于查找各种结构性缺陷和表面损伤,表面沉积和蚀刻方法建立或切断电线,如消除缺陷,达到修复的目的,也可以用STM图像检查结果是好还是坏。
6.原子力显微镜的出现无疑促进了纳米技术的发展。扫描探针显微镜,以原子力显微镜为代表,是一系列的显微镜,使用一个小探针来扫描样品的表面,以提供高倍放大。Afm扫描可以提供各类样品的表面状态信息。
与传统显微镜相比,原子力显微镜观察样品的表面的优势高倍镜下在大气条件下,并且可以用于几乎所有样品(与某些表面光洁度要求)并可以获得样品表面的三维形貌图像没有任何其他的样品制备。
扫描后的三维形貌图像可进行粗糙度计算、厚度、步长、方框图或粒度分析。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)