1、 一种是计算数据中observed variables indicators (变量)
之间的相关系数(correlations)的个数,一般用k来表示变量的个数,其相关系数的个数则为 k X
(k–1) / 2。如你的例子中有12个变量,它们之间的相关系数应该有12 X 11 / 2 = 66。
2、另一种是计算数据所有变量之间的variance-covariance (方差-协方差) 的个数,公式为 k X (k + 1) / 2。在本例中,共有
12 X 13 /2 = 78。
3、“模型所需的信息”也有两种对应的算法。与相关系数对应的算法是模型中所需估计的parameters
(参数),包括factor loadings (因子负荷,即λ,本例中有12个)、coefficients of exogenous factors
(自变量因子对因变量因子的影响系数,即γ,本例中有2个)、 coefficients of endogenous factors
(因变量因子对因变量因子的影响系数,即в,本例中有1个),三者相加共有 12 + 2 + 1 = 15个参数需要被估计。
如果按方差-协方差计算的话,那么需要被估计的参数,除了以上的λ、γ和в以外,还需要加上每个errors
of indicators(变量的残差,即δ和ε,本例中有12个),四者相加为 12 + 2 + 1 + 12 = 27。
最好是大于0.9,甚至于大于0.95,这些拟合指标的临界值都是通过大量的数据模拟得到的,也就是说如果达不到这些指标,模型很可能就是误设模型,不过我也有看到一篇数据模拟的论文里提到当样本量小于500的时候,srmr是最合适的指标,如果小于0.05,可以肯定模型正确,若大于0.08,可以肯定是误设的(适用于数据正态时,偏态时大于0.11认为模型误设),而其他的拟合指标表现不稳定,那这个时候主要参考srmr就可以,其他的指标过得去就行,如果样本量大于1000,NNFI,CFI,IFI这些指标比较合适,0.95以上可以认为模型正确,0.85以下可以断定模型错误(适用于数据偏态时,正态时0.95以下即认为误设)你自己根据自己的的数据情况看吧,对于你提到的指标,我相信90%的文献都说是0.9以上为标准的,这个经验值还是很可信的,如果你不是正在写论文,那完全可以接受这个结果,如果你一定想要结果好,那就要么好好处理处理数据,重新做一下结构方程的分析,要么就找到相关的文献支持,以表明你用0.9以下的指标数值是合理的
如果是论文答辩或者发论文,只是0.8过一些那很可能要被答辩老师或者审稿人质疑的,接近0.9应该还勉强可以
两个变量之间的相关系数,可以在SPSS中的correlation中计算得到。两组变量之间的相关系数如何计算呢?专研了一天,还是从竹庄家的网页里获得了最多的知识。以下为转贴:
计算两组变量之间相关系数的最好(即最容易也最准确)方法是用LISREL、AMOS等结构方程模型(SEM)。如果A1-A3是一个潜在因子、B1-B5是另一个潜在因子。SEM可以同时检验这两个潜在因子内部各观测变量是否相关以及两个因子之间是否相关。
如果你没学过SEM而只想在SPSS里做,有几种变通方法,但是都比较麻烦一点,其结果略有差别。
一、因子分析(EFA):先分别对A1-A3和B1-B5做因子分析、并从中生成两个因子、最后在相关分析中计算因子之间的相关系数。如果这两组变量(尤其是B1-B5)每组各自存在2个或更多的因子,就有问题了。(当然,如果这种情况发生,用其它方法同样也会有问题。)
二、General Linear Model(GLM):选"Multivariate", 将A1-A3放入"Dependent Variables"、B1-B5放入"Covariate(s)",执行后在“Test of Between-Subjects Effects"的表底部,找到对应于A1-A3的三个"R Squared" ,求其平均,再求其平方根(squared root),就是两组变量的相关系数了。
三、在MANOVA里启用其Canonical Correlation,SPSS菜单中已找不到MANOVA了,要写如下的syntax:
MANOVA a1 a2 a3 WITH b1 b2 b3 b4 b5
/DISCRIM ALL ALPHA(1)
/PRINT=SIG(EIGEN DIM)
其产生很多个表格,最后的“Analysis of Variance -- design 1:Estimates of effects for canonical variables”给出了类似GLM的R Squared,然后再求平方根
四、如果使用SPSS15,它提供了一个"Canonical Correlations.sps"的syntax,可以调用,其结果的解读如上。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)