以目前实验室配有的FIB-SEM的型号是蔡司的Crossbeam 540为例进行如下分析,离子束最高成像分辨率为3nm,电子束最高分辨率为0.9nm。该系统的主要部件及功能如下:
1.离子束: 溅射(切割、抛光、刻蚀);刻蚀最小线宽10nm,切片最薄3nm。
2.电子束 : 成像和实时观察
3.GIS(气体注入系统): 沉积和辅助刻蚀;五种气体:Pt、W、SiO2、Au、XeF2(增强刻蚀SiO2)
4.纳米机械手: 转移样品
5.EDS: 成分定量和分布
6.EBSD : 微区晶向及晶粒分布
7.Loadlock(样品预抽室): 快速进样,进样时间只需~1min
由上述FIB-SEM的一个部件或多个部件联合使用,可以实现在材料研究中的多种应用,具体应用实例如下:
图2a和b分别是梳子形状的CdS微米线的光学显微镜和扫描电镜照片,从光学显微镜照片可以看出在CdS微米线节点处内部含有其他物质,但无法确定是什么材料和内部形貌。利用FIB-SEM在节点处定点切割截面,然后对截面成像和做EDS mapping,如图2c、d、e和f所示,可以很直观的得到在CdS微米线的节点处内部含有Sn球。
FIB-SEM制备TEM样品的常规步骤如图3所示,主要有以下几步:
1)在样品感兴趣位置沉积pt保护层
2)在感兴趣区域的两侧挖大坑,得到只有约1微米厚的薄片
3)对薄片进行U-cut,将薄片底部和一侧完全切断
4)缓慢移下纳米机械手,轻轻接触薄片悬空的一端后,沉积pt将薄片和纳米机械手焊接牢固,然后切断薄片另一侧,缓慢升起纳米机械手即可提出薄片
5)移动样品台和纳米机械手,使薄片与铜网(放置TEM样品用)轻轻接触,然后沉积pt将薄片和铜网焊接牢固,将薄片和纳米机械手连接的一端切断,移开纳米机械手,转移完成
6)最后一步为减薄和清洗,先用大加速电压离子束将薄片减薄至150nm左右,再利用低电压离子束将其减薄至最终厚度(普通TEM样品<100nm,高分辨TEM样品50nm左右,球差TEM样品<50nm)
一种如图4a所示的MoS2场效应管,需要确定实际器件中MoS2的层数及栅极(Ag纳米线)和MoS2之间的距离。利用FIB-SEM可以准确的在MoS2场效应管的沟道位置,垂直于Ag纳米线方向,提出一个薄片,并对其进行减薄,制备成截面透射样。在TEM下即可得到MoS2的层数为14层(图4c), Ag纳米线和MoS2之间的距离为30nm(图4b)。
图5是一种锰酸锂材料的STEM像,该样品是由FIB-SEM制备,图中可以看到清晰的原子像。这表明FIB-SEM制备的该球差透射样非常薄并且有很少的损伤层。
FIB-SEM还可以进行微纳图形的加工。
图6a 是FIB-SEM在Au/SiO2上制备的光栅,光栅周期为150nm,光栅开口为75nm。
图6b 是利用FIB-SEM在Mo/石英上做的切仑科夫辐射源针尖,针尖曲率半径为17nm。
图6c 是在Au膜上加工的三维对称结构蜘蛛网。
图6d 是FIB-SEM在硅上刻蚀的贺新年图案,图中最小细节尺寸仅有25nm。
FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。大概过程如图7a所示, FIB切掉一定厚度的样品,SEM拍一张照片,重复此过程,连续拍上百张照片,然后将上百张切片照片重构出三维形貌。图7b是一种多孔材料内部3×5×2um范围的三维重构结果,其实验数据是利用FIB-SEM采集,三维重构是利用Avizo软件得到,其分辩率可达纳米级,展示了内部孔隙的三维空间分布,并可以计算出孔隙的半径大小、体积及曲率等参数。
利用FIB-SEM配有的纳米机械手及配合使用离子束沉积Pt,可以实现微米材料的转移,即把某种材料从一个位置(衬底)转移到特定位置(衬底),并固定牢固。图8是把四针氧化锌微米线从硅片转移到两电极的沟道之间,从而制备成两个微米线间距只有1um的特殊器件。
最后,FIB-SEM还有很多其他的应用,例如三维原子探针样品制备,芯片线路修改等。总之FIB-SEM是材料研究中一个非常重要的手段。
不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。
想准确测定厚度还是很麻烦的,关键就在于制样,关于镀层或者薄膜厚度的测定有相关标准的,标准名称我不太记得了,改天给你发过来也行(如果需要),大概意思是说在要测的镀层外面再镀一层镍,然后把材料固化在树脂中,再做截面,或者抛光,然后再测定,关键是不要破坏镀层.关于SiO2不导电的问题,喷金或者喷碳就可以解决.SEM,EDS,XRD的区别,SEM是扫描电镜,EDS是扫描电镜上配搭的一个用于微区分析成分的配件——能谱仪。能谱仪(EDS,Energy Dispersive Spectrometer)是用来对材料微区成分元素种类与含量分析,配合扫描电子显微镜与透射电子显微镜的使用。XRD是X射线衍射仪,是用于物相分析的检测设备。扫描电子显微镜(scanning electron microscope,SEM,图2-17、18、19)于20世纪60年 代问世,用来观察标本的表面结构。其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样 品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子 束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束 的轰击下发出次级电子信号。 目前扫描电镜的分辨力为6~10nm,人眼能够区别荧光屏上两个相距0.2mm的光点,则扫描电镜的最大有效放大倍率为0.2mm/10nm=20000X。
EDS的原理是各种元素具有自己的X射线特征波长,特征波长的大小则取决于能级跃迁过程中释放出的特征能量△E,能谱仪就是利用不同元素X射线光子特征能量不同这一特点来进行成分分析的。使用范围:
1、高分子、陶瓷、混凝土、生物、矿物、纤维等无机或有机固体材料分析;
2、金属材料的相分析、成分分析和夹杂物形态成分的鉴定;
3、可对固体材料的表面涂层、镀层进行分析,如:金属化膜表面镀层的检测;
4、金银饰品、宝石首饰的鉴别,考古和文物鉴定,以及刑侦鉴定等领域;
5、进行材料表面微区成分的定性和定量分析,在材料表面做元素的面、线、点分布分析。
X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析。广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)